A Detailed Simulation Study of the UWAN-MAC
Protocol for Underwater Acoustic Networks

Paolo Casari, Fabio E. Lapiccirella and Michele Zorzi

Department of Information Engineering — University of Padova — Via Gradenigo 6/B, 1-35131 Padova, Italy

E-mail: {casarip, zorzi}edei.unipd.it ,

Abstract—In this paper, we present a simulation study of
UWAN-MAC, a recently proposed Medium Access Control
(MAC) protocol for underwater acoustic networks. While the
assumptions behind the protocol are interesting (coordinating
the nodes’ transmissions through some sort of adaptive TDMA
and saving energy through sleep/awake cycles), yet they bring
further challenges into the picture, e.g., the need to keep nodes
synchronized in an efficient way. We present a set of results
that show how critical the assumptions behind the protocol are,
and specifically focus on how quickly the network performance
degrades in the absence of updated synchronization information.
QOur results show that a periodic resynchronization is necessary
and allow a study of the tradeoff between the signaling overhead
and the overall network performance, in terms of throughput,
success ratio, asynchrony among nodes, and energy consumption.

Index Terms— Acoustic telemetry and communication; Access,
custody, and retrieval of data; Information management.

I. INTRODUCTION AND RELATED WORK

ISTRIBUTED underwater sensor networks are an emerg-

ing research area, that currently stimulates an increasing
number of research contributions. The interest around this
subject is well justified by the additional challenges posed
by wireless underwater networking with respect to terrestrial
radio communications. Radio waves scatter rapidly under-
water, allowing reasonable communication performance only
over short distances. As an alternative to radio waves, optical
technologies also enable underwater communications, but are
feasible only within a limited reach, besides requiring further
efforts to keep the transmitter and receiver aligned.

On the other hand, acoustic waves have been used for
decades in underwater environments for different purposes,
such as telemetry and sonar detection. Their application to
underwater networking, instead, is rather new, as seminal con-
tributions in the *90s proved the feasibility of underwater net-
working using acoustic communications. Acoustic waves bring
a quite different propagation behavior into the picture [1]. First
of all, they propagate at a slow speed ¢ ~ 1500 m/s, which
is five orders of magnitude smaller than for radio propagation
in the air. The propagation speed actually changes with the
depth, temperature, and salinity of the water [1]. Secondly,
the attenuation incurred by acoustic waves is a function of
both the covered distance and the frequency of the transmitted
signal, according to the equation A(d, f) = d*a(f)?, where
k describes the geometry of propagation similarly to the path
loss exponent for terrestrial radio, and a(f) is the absorption
factor, determined by the chemical composition of water. Also,
unlike in radio, the noise process at the receiver side is not
white, but has a frequency-dependent power spectral density,

fabiocemilio.lapiccirella@gmail.com

that also depends on environmental conditions such as wind-
driven waves and shipping activities. The superposition of
the frequency dependence exhibited by both the attenuation
and the noise yields a relationship between the available
communication bandwidth and the distance of the two parties,
as the bandwidth tends to shrink for increasing distance [2].
Nonetheless, properly designed acoustic systems can commu-
nicate over distances on the order of 100 km. This makes
acoustic waves a suitable solution for underwater networking,
as acoustic links can be required to bridge distances on the
order of some kilometers.

UnderWater Acoustic Sensor Networks (UWASN) are cur-
rently at an early stage of development. Their possible future
applications include water sampling, environmental moni-
toring, forecast of extreme weather conditions (such as a
tsunami), support to navigation, and so forth. With the support
of Autonomous Underwater Vehicles (AUVs), UWASNs may
also offer an automated solution to water monitoring needs.
Deploying networked underwater devices is expensive, and
therefore it would be desirable that such networks offer the
maximum performance for the longest time, keeping human
intervention to a minimum during operation. This calls for
the design of efficient communication schemes and proto-
cols, offering reasonable data transport capabilities and high
energy efficiency. Among these protocols, Underwater Wire-
less Acoustic Networks — Medium Access Control (UWAN-
MAC) [3], [4] has been among the first to be proposed and
specifically designed to work in UWASNSs. It is conceived
with energy saving in mind, in that nodes alternate between
a sleep and an awake mode, and try to do so only when
strictly necessary, i.e., when they should listen to a neighboring
transmission or transmit something themselves. As the main
protocol operations depend on the synchronism among the
schedules of the nodes to successfully establish links, a drift
among them can be potentially harmful.

In this work, we accurately describe and analyze UWAN-
MAC in order to assess the effects of such synchronization
problems. We show how important it is to keep the schedules
aligned and how fast the protocol performance decays under
synchronization drift, and suggest a means of choosing a
resynchronization interval that balances the need to keep the
network working and the need not to waste resources on
signaling traffic.

II. DESCRIPTION OF UWAN-MAC

UWAN-MAC [3], [4] is among the first protocols specifi-
cally designed for underwater networks, as it takes care of both

the high propagation delays of acoustic waves and the power
savings required by underwater devices. This protocol tries
to avoid packet collision through setting up adaptive TDMA
schedules agreed upon and shared by neighboring nodes.
Schedules are used for understanding when a node should
wake up to hear a transmission from a neighbor and when
it is its own turn to transmit. Whenever no communications
are expected, the node goes to sleep. Prior to actual packet
transmissions, the network undergoes a setup phase. Both
the setup and the data exchange phases are described in the
following sections. More details can be found in [3], [4].

A. Setup Phase

Each node sets its duty cycle to the same value d. Since
with UWAN-MAC nodes wake up specifically to listen to
neighbors, the usual duty cycle definition (the ratio of the
awake time over the cycle duration) does not hold here. To be
more meaningful, the duty cycle is defined in the following
as the ratio of a data packet transmission time, 7p, to the
total cycle time Tj. Hence, each node sets its initial cycle
length to Ty = 7p/d. No node actually goes to sleep in the
setup phase. After the initial choice, each node broadcasts its
own transmission instant and the cycle duration using a SYNC
message. This way, after receiving a SYNC from all neighbors,
a sensor is notified that the next reception of a data packet from
the sender of the SYNC will take place exactly one cycle period
after the reception instant, and thus knows when to wake up
even without being aware of the propagation delay. This setup
phase needs to be carried out periodically, in order to keep
the schedules of the nodes synchronized. In fact, network
operations as described in the following Section may lead
node reception phases to be misaligned with the neighbors’
transmission epochs, even in a network with static nodes. This
point will be discussed later.

B. Transmission and Listen Phase

If the initialization phase is completed without errors, each
node knows when to wake up to listen to one of its neighbors
and when it is its turn to transmit. When a node wakes up to
transmit, it sends packets composed of three fields:

e SYNC: allows a node to communicate changes in the cycle
period length that may be necessary in order to avoid
collisions (see also below)

e MISSING: contains a list of the nodes the present sender
did not receive anything from at the specified epoch, and
is used to trigger a confirmation of presence by those
nodes

o DATA: the actual payload of the packet.

Since the initial choice of the transmission epoch is random, it
may happen that two nodes exhibit overlapping transmission
periods. If both nodes transmitted at this time, a collision
would result. To avoid this event, each transmitter adjusts its
wakeup epoch according to the following. Define A/ (i) as the
set of neighbors of node ¢. Let X; and 7; be the current
transmit epoch and cycle period for node i, respectively.
Finally, let W; ;. be the instant when node ¢ wakes up to listen

to its neighbor k, k € N (7). The new transmit epoch is chosen
as follows:!

if 3k s.t. ‘Xi—Wi,k‘+TD<Tg (D)
then select X} € (X;, X; + 1)
subject to:
| X! =W, k| + 7D > T4 VEk, 2)

where 7p is the data transmission time, and 7, is a suitably
chosen guard time that ensures the absence of collisions and
the reception of HELLOs when needed. For this purpose, it
suffices to set 7, to one data transmission time, 7p, plus the
maximum propagation delay in the network. The constraint in
(2) means that if there is a node whose transmission instant
is scheduled to less than a guard time from that of node 1,
then node ¢ changes its own instant so that it is spaced at least
T4 from the wakeup epochs already scheduled to listen to any
other neighbor (i.e., the instants when a reception from that
neighbor would begin). Note that, depending on d, the current
cycle period T; might be too short to accommodate the new
transmission schedule. To solve this problem, the node can
change its cycle according to T/ = T; + | X/ — X;|. Since
our results show that nodes tend to increase their cycle period
indefinitely, we propose to limit its length to be at most 20%
greater than the nominal value Tj, and reset it to T if it
exceeds this threshold. It is worth noticing that the new wakeup
epoch must be communicated to the neighbors, so that they
can wake up at the right moment. This cannot be done before a
data packet containing the SYNC field is transmitted, which can
lead to misalignments between the actual transmission epoch
and the instant the neighbors will wake up to listen to node ¢’s
transmission. This fact is a serious drawback of the protocol.

After having sent its data packet, a node waits before going
back to sleep and listens to the channel. This is necessary
to let nodes listed in the MISSING field of the data packet
advertise their presence with a HELLO packet. In case a HELLO
is received, the node knows that this previously missing sender
is actually physically present in the neighborhood and will
continue waking up at the arranged epochs to listen to its
transmissions. The duration of the listen phase is set to allow
HELLOs from possible neighbors to actually reach the data
sender. If new nodes are allowed to enter the network, this
phase also allows them to advertise their presence.

It can be observed that UWAN-MAC can be potentially
very effective in saving energy at nodes (nodes need only
wake up at certain instants), but critically relies on updated
and synchronized wakeup schedules between neighbors. To
study the effects of the misalignment of transmit/listen phases
among communication parties is the main objective of this

paper.

ITI. RESULTS
A. Network Setting

The following results are obtained by simulating UWAN-
MAC over a network formed of 20 nodes. The nodes are
randomly deployed over a 4 km X 4 km square area. We

'Note that, compared to [4], our condition has the additional term 7p to
account for the fact that the two transmissions should not overlap.

assume that the network is static, in the sense that nodes do
not move from their initial position and, in addition, no nodes
leave or enter the network during the simulation. Traffic is gen-
erated according to a Poisson process with rate A pkt/min for
the whole network. The nodes follow sleep/awake schedules
with duty cycle d ranging from 0.002 to 0.009, depending
on the specific setting and the objectives of the experiments
performed. The reason why the chosen values for the duty
cycles are so small is that UWAN-MAC requires a low duty
cycle in order to accommodate all transmission and listening
wakeup epochs at all nodes with the constraint expressed by
(2). From our results, it is likely that this is not possible for
duty cycles higher than 0.01.

The underwater channel model described in [2] is repro-
duced here. Specifically, we use it to calculate the bandwidth
where all the nodes can operate and hear each other within
the network area. We explicitly model the capture effect by
deriving the Signal-To-Interference-and-Noise ratio (SINR) for
each packet being received. This way, if two packets collide
but exhibit very different received powers, it is possible that
the more powerful can be received correctly. The actual signal
bandwidth is 18.26 kHz wide, from 6.56 kHz to 24.82 kHz.
We assume that a signaling rate of exactly 18.26 kbps is
reachable in this bandwidth.

Routing is performed by computing minimum-energy for-
warding paths as follows. Firstly, a neighbor discovery algo-
rithm is run. We set a “coverage range” for each node, in
the sense that all other nodes within coverage can receive
the sender’s transmission with an SINR exceeding a certain
prescribed minimum value. Then we refined the neighbor
discovery information by varying the coverage range of the
nodes so that neighbors are “mutual”, i.e., they have each
other in their neighbor list. This is particularly important for
UWAN-MAC as, for example, the MISSING field in a data
packet can trigger a HELLO only if the inquired node actually
considers the sender as its neighbor.> To compute routes, we
used the Bellman-Ford algorithm, and defined the link cost as
the energy required to bridge the link. It should be noted that
the originally proposed version of the algorithm was designed
to adapt to topology-changing networks. For example, leaving
or dying nodes are canceled from the neighbor list of a sender
when they do not answer the MISSING field for a prescribed
number of times. Since we test the network in a static topology
and we wish to concentrate on MAC issues, we leave the
neighbor list unchanged even if a neighbor results repeatedly
missing.

For our evaluation, we have developed an event-driven
MATLAB simulator that fully reproduces the behavior of
UWAN-MAC. All results are obtained by averaging over 20
different multi-hop topologies, in order to provide sufficient
statistical confidence.

2Neighbors may not be mutual if, for example, a node is isolated and needs
to increase its transmit power (thus coverage range) in order to actually have
neighbors. In our setting, the minimum number of neighbors is 3. Each of
these will then need to adjust its coverage range accordingly, in order to allow
bidirectional communications.

B. Simulation Results and Discussion

Our results are mainly aimed at assessing how the general
performance of UWAN-MAC depends on synchronization
among nodes. As mentioned in Section II, most of the protocol
operations hinge on waking up receivers when a neighbor-
ing transmitter is sending data. Nevertheless, transmission
wakeup instants are constrained to be at least a guard time
Tg apart from all of the neighbors’ transmission epochs. If
this condition is not satisfied by the initial random choices,
nodes may decide not to send data and change their own
transmission epoch according to (2). The neighbors can only
be informed of this through a HELLO packet following a
MISSING notification in a transmission. If more than one node
is forced to change its schedule, it might be possible that their
transmission/reception wake-up epochs do not coincide any
more, and thus synchronization is no longer maintained.

In Section II we recalled that a suitable solution (yet possi-
bly burdensome) is to go through a SYNC message exchange
again after a number of cycles, say every tenth cycle. Our
first evaluation refers to this case. Figures 1 and 2 depict
the throughput (defined as the number of packets per second
that successfully reach their destination) and the transmission
success ratio of UWAN-MAC, with resynchronization every
10 cycles, as a function of the packet generation rate per node
A and for different values of the duty cycle d. If resynchroniza-
tion is performed frequently enough (e.g., every 10 cycles as
we did), UWAN-MAC shows a stable behavior, and increasing
the duty cycle has a beneficial effect on throughput. Yet, recall
that a higher duty cycle decreases the degrees of freedom
of the protocol, by imposing shorter cycles, and making it
more difficult to accommodate all receive and transmit wakeup
epochs while still satisfying (2). As the nodes try to adapt their
transmission schedules in a more constrained, high duty cycle
condition, schedule misalignments and collisions may take
place, which in turn lowers the success ratio, as shown in Fig-
ure 2. This is actually an important drawback for the protocol.
The number of transmissions performed at higher duty cycle
increases, so that the actual network throughput increases as
well despite the lower success ratio. Yet, more energy is wasted
on packet losses due to collisions. In underwater environments,
where transmissions are responsible for the biggest share of
the power expense, collisions should be avoided [5] or at least
limited [6]. This argument is further supported by Figure 3,
that shows the ratio of the energy wasted on collisions to the
total energy consumption. Figure 3 confirms that increasing the
duty cycle makes the node spend more energy uselessly, up to
65% at the highest value of the duty cycle (the one yielding the
highest throughput in our experiments). The previous results
suggest that the duty cycle, that is a controllable parameter, can
be tuned in order to achieve a higher throughput at the price of
a higher energy consumption. Figure 4 plots the tradeoff be-
tween throughput and energy wasted due to collisions, where
each curve corresponds to one traffic value and is spanned left
to right by increasing the duty cycle d. At low traffic, the curve
is almost flat. This means that the most convenient choice is
to keep d as low as possible, since this does not significantly
affect the network performance. Conversely, for higher traffic,
increasing the duty cycle causes a proportional increase of

~-d =0.002
—d =0.004
—*-d =0.006
-8-d =0.007
—*-d =0.008
-6-d =0.009

Average Throughput [pkt/min]

10 12

4 6 8
Packet arrival rate per node, A [pkt/min]

Fig. 1. Throughput vs. traffic for varying d, with resynchronization every
10 cycles.

o
~
1

o
[
T

o
23]
T

o
rS

~-d =0.002

—x-d = 0.004

—+d =0.006

-8-d=0007

—*-d =0.008

-6-d =0.009

L L L L I

Average Ratio of Wasted Energy over Total Energy

4 6 8
Packet arrival rate per node, A [pkt/min]

Fig. 3. Energy wasted due to collisions vs. traffic for varying d, with
resynchronization every 10 cycles.

both the throughput and the energy wasted on collisions, and
allowing a tradeoff between throughput (hence data transport
capabilities) and energy consumption (hence communication
efficiency and network lifetime).

All previous results were drawn in the case where resyn-
chronization takes place once every 10 cycles. It could be
argued that this is a very high rate, as every tenth cycle yields
no throughput. To give some insight into the importance of
a sufficiently frequent resynchronization, Figure 5 shows a
superposition of the instantaneous throughput and the average
success ratio per cycle as a function of time. There we also
depict the asynchrony factor, defined as the fraction of nodes
that did not schedule their wake up epochs correctly for the
upcoming cycle, causing, for example, unnecessary wakeups
to hear transmitters that would not send data, or vice-versa,
sleeping when a neighbor is actually awake to transmit. We set
the duty cycle to 0.002 for this experiment and consider the
case A = 18, which corresponds to the saturation condition.
Figure 5 suggests that the throughput experiences a steep drop
if synchronization is not refreshed regularly. The reason behind
this is the increasingly higher asynchrony among the nodes’
schedules, the correspondingly greater number of failures in
listening to transmissions, and hence the lower success ratio.
In order to keep the nodes sufficiently synchronized, the SYNC
message exchange should be performed before the asynchrony

4
©
]

4

©

a
T

4
©
T

e
3
a

o
3

~-d=0.002
—-d = 0.004
——d =0.006
-8-d = 0.007
—4d =0.008
-6-d = 0.009

Average Success Ratio
o
[}
(%))

[
13
a

o
o

0.45

| | | | |]
0.4 4 5 3
Packet arrival rate per node, A [pkt/min]

Fig. 2. Success ratio vs. traffic for varying d, with resynchronization every
10 cycles.

10r

9

Average Throughput [pkt/min]
o
T

-1 = 0.12 [pkt/min]

4 /
3+ , %) = 0.6 [pkt/min]

—+% = 0.3 [pkt/min]

-8~ = 12 [pkt/min]

bl L L L L L L L L L I
0.2 0.25 0.3 0.65 0.7

0.35 0.4 0.45 0.5 0.55 0.6
Average Ratio of Wasted Energy over Total Energy

Fig. 4. Throughput vs. energy wasted due to collisions with resynchronization
every 10 cycles for different traffic values.

factor gets too high (no more than 10-20%) and the success
ratio limits throughput. 10 cycles are a good choice in this
case. This is also confirmed by Figure 6, that shows the
same results of Figure 5, but resynchronizing nodes every 10
cycles. This keeps the asynchrony under control (usually below
10% within a cycle, but never more than 20%), and a better
throughput is granted by a high enough success ratio.
Nevertheless, the effectiveness of the resynchronization rate
is affected by the duty cycle. In fact, higher duty cycles tend
to worsen the transmission performance more quickly, because
they impose stricter constraints on the schedules of the nodes.
To support this claim, we set the duty cycle to 0.004 and repeat
the previous experiments. The results are shown in Figures 7
and 8. Doubling the duty cycle halves the cycle time for all
nodes and makes it more difficult to arrange the schedules.
Overall, this causes a worse asynchrony, that spreads much
faster and causes a severe throughput decrease, until receptions
are only sporadically correct. Resynchronizing only every 10
cycles helps, but is still an insufficient effort. From Figure 8
we can observe that even if the throughput is improved as
opposed to the case without resynchronization, yet the success
ratio does not go beyond 0.8, and the asynchrony typically
oscillates between 15% and 30%. A shorter interval between
SYNC exchanges, such as 3 to 5 cycles, could help in this case,
but would represent a serious limitation for the network, as it

—— Asynchrony Factor
---Success Ratio

-8 Throughput

Asynchrony Factor vs. Success Ratio and Throughput

, | | | | , | i i}
0 100 200 300 400 500 600 700 800 900 1000
Cycle

Fig. 5. Throughput, average success ratio and asynchrony factor per cycle
without resynchronization, d=0.002, A=18.

—— Asynchrony Factor
- --Success Ratio
-8 Throughput

Asynchrony Factor vs. Success Ratio and Throughput

1000
Cycle

Fig. 7. Throughput, average success ratio and asynchrony factor per cycle
without resynchronization, d=0.004, A=18.

would dedicate a lot of resources to keeping the schedules
updated, thereby sacrificing throughput. Yet, given the rapid
drift of the synchronization, this is the only way to keep
UWAN-MAC running with higher duty cycles. Whether or
not to perform these protocol adjustments is a design choice
and largely depends on the application to support. On one
hand, long network operations would require duty cycles even
shorter than this one, in order to limit the synchronization drift
and require only infrequent exchanges of SYNC messages. On
the other hand, higher duty cycles may be chosen for time-
critical operations that require a prompt data delivery, thus
providing greater throughput at the price of higher energy
wasted on collisions.

As a last set of results showing the importance of keeping
the network synchronized, we show in Figure 9 the success
ratio decrease as a function of the asynchrony factor, for
d = 0.002 and 0.004. As synchronization drifts, the average
success ratio tends to drop. In addition, a higher duty cycle
causes worse performance at even lower asynchrony. Given
that a periodic SYNC exchange is needed to keep the protocol
working, these results, along with those in Figures such as 5-6
and 7-8, can help design the right resynchronization interval.
For example, looking at Figure 9, we might choose not to
let the success ratio drop more than 5% below its initial
value, which means, for example, allowing for a maximum

—— Asynchrony Factor
- - -Success Ratio
~8-Throughput

Asynchrony Factor vs. Success Ratio and Throughput

Mﬂmﬂ/ﬂrﬂm | Vot

|
5 7 80 9 100
Cycle

Fig. 6. Throughput, average success ratio and asynchrony factor per cycle
with resynchronization, d=0.002, A=18.

—— Asynchrony Factor

- - -Success Ratio
~8-Throughput

Asynchrony Factor vs. Success Ratio and Throughput

T

]
7 80 9 100

5
Cycle

Fig. 8. Throughput, average success ratio and asynchrony factor per cycle
with resynchronization, d=0.004, A=18.

asynchrony of 0.1 for d = 0.002 and of 0.2 for d = 0.004.
Then we look at Figures 5 and 7 and conservatively choose
to resynchronize every 10 cycles for d = 0.002 and every
5 cycles for d = 0.004. In the example above, we chose
to preserve the success ratio, because failing transmissions
yields a high cost in terms of wasted energy, but similar
considerations may apply to the throughput or to any other
metric as measured in the simulations, depending on the
specific design needs

IV. CONCLUSIONS

In this paper, we have performed an analysis of UWAN-
MAC, a recently proposed protocol that is specifically de-
signed to be applied to UnderWater Acoustic Sensor Networks
(UWASNS), aiming at showing its advantages and drawbacks.
More specifically, we have focused on the tradeoff between
the duty cycle of the nodes, the throughput of the network,
the success ratio and the energy consumption. Since UWAN-
MAC strongly relies on the synchronization between the
nodes’ adaptive TDMA schedules, we have highlighted how
fast network performance drops for increasing synchronization
drift, and confirmed periodic exchange of synchronization
messages to be a good solution for the protocol. Through our
results, we suggested that this decrease be measured so as to

© d=0.002, A = 18 [pkt/min]
L © O d=0.004, A = 18 [pkt/min]
0.9 %Q
0.8
0.7]
206
i
?05
Q
8
304
0.3]
0.2
0.1
GO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Asynchrony
Fig. 9. Average success ratio vs. asynchrony factor per cycle without

resynchronization, d=0.002, 0.004, A=18.

set a suitable resynchronization interval. This interval should
be short enough not to let asynchrony grow too much, while
being suitably long not to impose too much signaling burden
on the network.

Future directions of this work include the comparison of
UWAN-MAC to other MAC protocols for UWASNs and an
analysis of its suitability under different application require-
ments and with different routing and broadcasting protocols.

V. RELATED WORK

The study of networking protocols for underwater sensor
networks is a relatively new topic. Currently, some works have
pointed out the different pros and cons of Time-, Frequency-
and Code-Division Multiple Access schemes [7], [8], also tak-
ing clustering into account. ALOHA and a collision avoidance
scheme have also been compared in [9]. While the schemes
proposed in those papers are quite general, the design of
efficient protocols for underwater Medium Access Control
(MAC) protocols is still in its infancy. In the following we
briefly review the main approaches found in the literature.

Slotted FAMA [5], for example, strives to save energy by
avoiding collisions through handshaking and carrier sensing.
All nodes in the network are synchronized to a slotted TDMA
schedule. Each slot is long enough to accommodate the
maximum propagation time in the network. Transmitters are
allowed to initiate a transmission only at the beginning of
a new slot. The usual 4-way handshake is employed, with
a Request-To-Send (RTS) issued by the transmitter, followed
by a Clear-To-Send (CTS) from the receiver, by the actual
DATA transmission and by some feedback from the receiver
in the form of an ACK/NACK packet. Channel sensing is
performed prior to every RTS transmission, and lasts two slots
(to cover one round-trip time). PCAP [10] pursues similar
objectives by making the duration of a handshake fixed, thus
predictable. This is achieved by having the receiver wait
before sending a CTS, so that the transmitter hears the CTS
exactly after one maximum round-trip time. With this solution,

all the neighbors know when transmissions will take place,
and can schedule theirs accordingly. Moreover, a node can
perform other system- or application-required tasks during
protocol idle times. The MAC protocol proposed in [6] works
in the absence of a shared synchronization. The protocol is
based on an RTS/CTS exchange, with an additional waiting
time before sending data that allows to directly postpone the
transmissions if a concurrent handshake is detected nearby. In
addition, the protocol helps avoid collisions by using warning
messages: if a receiver, after sending a CTS, hears an RTS
from a second node, it sends out a message to the transmitter
asking it to refrain from sending data. This protocol does not
avoid collisions completely but tries to limit them, ultimately
outperforming protocols such as Slotted FAMA, that require
more listening time to ensure a proper channel access. In [11]
the efficient management of idle sensor time is addressed, also
exploiting the lower power consumption required to receive an
acoustic signal, as opposed to transmission. Tone-Lohi [12]
also exploits this fact and proposes to avoid collisions by
sending very short busy tones to signal that the channel is
being used.

ACKNOWLEDGMENT

This work is supported in part by NOAA’s Sea Grant
College Program, Project no. NAO60AR4170019.

REFERENCES

[1] R. Urick, Principles of Underwater Sound. McGraw-Hill, 1983.

[2] M. Stojanovic, “On the relationship between capacity and distance in an
underwater acoustic communication channel,” in Proc. ACM WUWNet,
Los Angeles, CA, Sept. 2006, pp. 41-47.

[3] M. K. Park and V. Rodoplu, “An Energy—efficient MAC protocol for
underwater wireless acoustic networks,” in Proc. IEEE/OES Oceans,
Brest, France, June 2005, pp. 1198-1203.

, “UWAN-MAC: an energy-efficient MAC protocol for underwater
acoustic wireless networks,” [EEE J. Oceanic Eng., 2007, to
appear. [Online]. Available: http://www.ece.ucsb.edu/rodoplu/Pubs/
ParkRodoplu UWANMAC.pdf

[5] M. Molins and M. Stojanovic, “Slotted FAMA: a MAC Protocol for
underwater acoustic networks,” in Proc. IEEE Oceans, Singapore, Sept.
2006.

[6] B. Peleato and M. Stojanovic, “A MAC protocol for ad hoc underwater
acoustic sensor networks,” in Proc. ACM WUWNet, Los Angeles, CA,
Sept. 2006, pp. 113-115.

[71 E. M. Sozer, M. Stojanovic, and J. G. Proakis, “Underwater acoustic
networks,” IEEE J. Oceanic Eng., vol. 25, no. 1, pp. 72-83, Jan. 2000.

[8] P. Casari, S. Marella, and M. Zorzi, “A comparison of multiple
access techniques in clustered underwater acoustic networks,” in
Proc. IEEE/OES Oceans, Aberdeen, Scotland, June 2007.

[9] Jose dos Santos Coelho, “Underwater acoustic networks: evaluation of

the impact of media access control on latency in a delay constrained

network,” Master’s thesis, Naval Postgraduate School, Monterey, CA,

Mar. 2005.

X. Guo, M. Frater, and M. Ryan, “A propagation-delay-tolerant colli-

sion avoidance protocol for underwater acoustic sensor networks,” in

Proc. IEEE Oceans, Singapore, Sept. 2006.

A. F. Harris III, M. Stojanovic and M. Zorzi, “When underwater acoustic

nodes should sleep with one eye open: idle-time power management in

underwater sensor networks,” in Proc. ACM WUWNet, Los Angeles,

CA, Sept. 2006, pp. 105-108.

A. Syed, W. Ye, and J. Heidemann, “Medium Access Control for

Underwater Acoustic Networks,” in Proc. ACM WUWNet, Los Angeles,

CA, Sept. 2006, work-in-progress paper.

[4]

[10]

(11]

[12]

