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Abstract— While very successful in traditional radio communi-
cations, the usage of TDMA and CSMA schemes for underwater
acoustic communications is severely limited in efficiency and scal-
ability, primarily due to the very large propagation delays. FDMA
seems a viable alternative in that the propagation delay does
not impact significantly its efficiency. However, in underwater
communications, the capacity achievable on a particular channel
depends strongly both on its frequency and on the communication
distance, unlike in traditional radio transmissions where FDMA
channels usually have comparable performance. Therefore, fixed
channel allocation schemes traditionally used for radio FDMA
do not perform well in underwater communications.

In this paper, we investigate the application of the principles
of cognitive radio and dynamic spectrum access to underwater
communications. In particular, we propose a channel allocation
scheme which exploits user location knowledge in order to
maximize the minimum channel capacity among those achieved
by the users. This provides maximum fairness and makes a more
efficient use of the available spectrum resources.

Performance evaluation carried out by means of simulation
shows that our approach can achieve a great improvement in
fairness among users, with respect to fixed allocation schemes,
while at the same time scaling much better and thus allowing
effective communications over larger distances.

I. I NTRODUCTION AND RELATED WORK

Underwater communications are currently a hot research
topic in the wireless communications field. The main differ-
ence with respect to terrestrial communications is found inthe
specific physical layer, which usually relies on acoustic waves.
This is not the only option for underwater transmissions, yet
it is seemingly the only one to provide sufficient coverage and
data rate. In fact, radio waves are typically absorbed quickly by
water, unless transmission is performed at very low frequency,
which in turn severely limits the data rate. Optical signalsare
an option as well but, despite the higher data rate, they tendto
have very limited coverage and to require good alignment of
transmit and receive devices. Conversely, recent advancesin
acoustic communications have allowed to build reliable links
over distances on the order of kilometers [1], [2], effectively
paving the way for the creation of the first underwater wireless
networks [3], [4].

Underwater acoustic communications present many differ-
ences with respect to radio communications. First of all,
acoustic waves propagate in water at a very low speedc =
1.5 km/s, which is five orders of magnitude smaller than
the propagation speed of radio waves in the air. Moreover,
as we will discuss in Section II, the attenuation incurred
by the signal and the receiver noise have a very strong
dependence on distance and frequency [5]. As a consequence,
when designing an underwater communication system, the
transmission frequency and bandwidth should be carefully

chosen depending on the expected communication distance.
Furthermore, acoustic transducers are much more energy-
consuming than radios, requiring transmission schemes that
save as much energy as possible. These facts need to be taken
into account in the design of any underwater network.

While the research on underwater communications networks
is still in its infancy, some recent efforts have outlined
the main performance differences of classic terrestrial radio
access schemes as applied to acoustic communications. For
example, [3] contains a first description of Time-Division
and Frequency-Division Multiple Access (TDMA and FDMA)
schemes, as well as a preliminary evaluation of clusters,
which are also considered in [6], where different options for
of intra-cluster and clusterhead-to-sink communication have
been compared. Carrier Sense Multiple Access (CSMA) has
also been evaluated [7] and compared to handshake-based
schemes such as the IEEE 802.11 RTS/CTS-based access [8],
that rely on the exchange of control messages prior to data
transmission. The main conclusions drawn by these works can
be summarized as follows. TDMA suffers from bad scalability:
performance degrades rapidly as the number of nodes or the
network deployment size increases. In fact, in order to protect
the transmission occurring in a time slot from the interference
caused by other transmissions in adjacent slots, a guard time
must be inserted. This guard time must be at least as long
as the maximum propagation delay in the network. Since the
acoustic waves travel very slowly in water, the guard times can
be long, requiring in turn to have long data transmission times
in order to preserve efficiency. On the other hand, random
access schemes such as CSMA and ALOHA [9] are very
vulnerable to collisions due, again, to the long propagation
times. Preliminary handshakes do not offer much help in this
case, because the exchange of control messages would take
a lot of time and decrease communication efficiency even
further. Additionally, recall that transmissions are veryenergy-
demanding, thus collisions should be avoided or limited in
order not to waste energy. In trying to overcome the issues
of TDMA and CSMA, other protocols designed explicitly for
underwater networks are based on the balance between data
transmissions, control messages, and sometimes awake-asleep
schedules. For example, [10] tries to avoid collisions com-
pletely by carefully scheduling the length of the handshakes,
whereas [11] can space transmissions more tightly, as it
tries to prevent collisions through specific signaling messages.
UWAN-MAC [12] is based on a sort of adaptive TDMA,
where nodes try to synchronize their awake-sleep schedules.
However, as for the basic TDMA case, the transmission epochs
must be separated by guard times, which limits efficiency.



To summarize, the major issues with MAC schemes which
operate entirely in the time domain are limited efficiency
and poor scalability due to the huge underwater propagation
delay. For this reason, FDMA becomes very attractive, as its
efficiency is not affected by long propagation delays. Actu-
ally, using FDMA imposes greater signal processing efforts,
because the underwater channel tends to be highly time-variant
and to create significant Doppler shifts. However, powerfuland
efficient algorithms for compensating channel effects are being
actively researched in the community (e.g., see [1], [2] and
references therein), making FDMA an increasingly feasible
option.

On the other hand, one of the main concerns with the use
of FDMA in underwater communications is that the fixed
channel allocation schemes traditionally employed in radio
communications are expected to yield low efficiency and poor
fairness, due to the strong interplay between communication
performance and the particular frequency band being used. To
address these issues, we propose a Cognitive Radio approach.
In [13], Cognitive Radio is defined as an intelligent device with
the aim of providing an efficient utilization of the spectrumby
means of dynamic and opportunistic spectrum access.1 In tra-
ditional radio communications, the use of the electromagnetic
spectrum is very inefficient: some portions such as the unli-
censed ISM bands are often overcrowded, while others such
as the licensed TV bands are often underused. In recent years,
it has been proposed to overcome this problem by allowing
unlicensed access to licensed bands, whenever and wherever
they are not in use by their licensee. As a consequence, in
addition to the unlicensed bands, which can be very congested
at some times and locations, a radio device might also be
able to access some licensed portions of the spectrum, again
depending on time and location. Cognitive Radio devices are
expected to achieve a more efficient spectrum utilization by
adapting to this availability of communication resources which
varies greatly with location, time and frequency.

Underwater acoustic communications are somewhat similar
to radio communications in this respect: as we will discuss
in Section II, the performance of the communication has a
strong dependence on both the portion of the spectrum in use
and the location of the user; moreover, the underwater acoustic
spectrum is very scarce, and thus the communication resources
available to a single user strongly depend on the number of
active users, which in turn depends on time and location. As a
consequence, the dynamic spectrum access techniques which
have been developed for radio communications are expected
to be effective for underwater communications as well.

The procedure followed by a Cognitive Radio device to
access the spectrum is described by thecognition cycle, which
in [13] is defined by the following phases: 1)radio-scene
analysis; 2) channel identification, which in particular includes
the prediction of channel capacity; 3)dynamic spectrum
access. In this paper, we propose a dynamic access technique

1It is worth noting that the original definition of Cognitive Radio by
Mitola [14] had a very broad scope and was not by any means limited
to dynamic spectrum access. However, since the work by Haykin[13],
dynamic spectrum access has become the most frequently investigated use
case for Cognitive Radio, to the point that a Cognitive Radiotoday is most
commonly referred to as an intelligent communication device performing
dynamic spectrum access.

for the underwater acoustic spectrum which conforms to this
definition of the cognition cycle. First of all, the propagation
scene is analyzed, determining the number of users and
the possible spectrum allocations; then the capacity of each
channel-user allocation is determined (note that capacityis
directly dependent on distance, which in turn can be accurately
estimated during a setup phase by means of round-trip time
measurements); finally, the most fair allocation is selected.
In the rest of this paper, after a brief introduction on the
underwater acoustic channel, we will describe in detail our
solution, and show how it can achieve a more fair acoustic
spectrum usage with respect to traditional techniques suchas
FDMA with a priori fixed channel assignment.

II. CHANNEL MODEL

In this Section, we give a brief overview of the physics of
acoustic propagation in water. The purpose of the followingis
to help the reader understand the tradeoffs found in spectrum
allocation for underwater communications. A more in-depth
description is beyond the scope of this paper, and can be found
in [5], [15].

First of all, recall that acoustic waves propagate in salted
water at a slow speedc ≈ 1500m/s. The actual propagation
speed is affected by depth, temperature, and salinity, but we
will consider it fixed for simplicity. However, perhaps the
most important feature of the underwater acoustic channel
is the dependence of the optimal transmission frequency
and bandwidth on the distance between the communicating
nodes [5]. To explain this, consider Urick’s model for the
attenuation of a tone transmitted at frequencyf [15]:

A(d, f) = dka(f)d . (1)

whered is the distance between transmitter and receiver, and
k is the counterpart of the path loss coefficient in terrestrial
radio, and is used to model the geometry of propagation. A
practical valuek = 1.5 is usually adopted. The factora(f) in
(1) is called the absorption loss, and models the conversionof
acoustic pressure into heat. This factor can be approximated
by Thorp’s formula [16]:

A(f) =
0.11f2

1 + f2
+

44f2

4100 + f2
+ 2.75 · 10−4f2 + 0.003 , (2)

where A(f) = 10 log
10

a(f). Equation (2) returnsa(f) in
dB/km for f in kHz. It should be noted from the formulas
above that the attenuation increases with frequency and that
the presence of the exponential terma(f)d in (1) strengthens
the dependence of attenuation on distance.

The noise power spectral density (psd) is also frequency-
dependent, and is usually expressed asN(f) = Nt(f) +
Ns(f) + Nw(f) + Nth(f), where the right hand side denotes
the superposition of four contributions: turbulence (subscript
t), shipping and other human activities (s), wind and waves
(w), and thermal noise in the receiver circuitry (th). These
components can be modeled as follows [5]:

Nt(f) = 17 − 30 log
10

(f)

Ns(f) = 40 + 20(s−0.5) + 26 log
10

(f) − 60 log
10

(f+0.03)

Nw(f) = 50 + 7.5
√

w + 20 log
10

(f) − 40 log
10

(f+0.4)

Nth(f) = −15 + 20 log
10

(f) , (3)



where Nx(f) stands for10 log
10

Nx(f), x ∈ {t, s, w, th}.
Moreover,s in Ns(f) is theshipping factor, representing the
intensity of shipping activities on the surface of the water,
and has values ranging between0 and 1. The factorw in
Nw(f) is the wind speed inm/s. The different components
impact the noise psd at different frequencies. For example,
in the high portion of the acoustic spectrum, typically used
for transmissions over short distances (tens of meters), the
turbulence and shipping components have very little effect,
whereas the other two can become dominant.

We are now ready to define the average SNR of a tone
transmitted at frequencyf and traveling a distanced as [5]

SNR(d, f) =
PT

A(d, f)N(f)∆f
, (4)

wherePT is the transmit power andN(f) is the noise power
spectral density (assumed constant in a narrow band∆f
aroundf ). In (4), the factor[A(d, f)N(f)]−1 is the frequency-
dependent term. It should be noted thatA(d, f) increases with
frequency whileN(f) decreases (at least to a certain point).
Hence, the inverse of the product of the two factors has a
maximum for some frequencyf0. This maximum represents
the best frequency to use to transmit the tone.

Since the main objective of this paper is to devise efficient
and fair channel allocation schemes, it is important to un-
derstand the impact of frequency-dependent channel effects
on allocation policies. To this end, we show in Figure 1
the frequency-dependent factor in (4),[A(d, f)N(f)]−1, for
a number of values ofd. Each gray line corresponds to a
different distance; some relevant distance values are labeled
for illustration. This figure shows that there is in fact an
optimal frequencyf0 where a transmitted tone incurs the most
favorable propagation/noise conditions, depending on distance.
A channel allocation example is also shown in Figure 1. A
simple case is considered, where two users share a common
bandwidth to transmit to a sink. User 1 is1 km away, whereas
user 2 is located farther, at a distance of5 km from the sink.
The system bandwidth spans from10 kHz to 40 kHz, and
is divided into two equally wide channels of15 kHz each.
Only two different allocations are possible in this case:i)
user 1 on channel 1 and user 2 on channel 2, orii) vice-
versa. According to the chosen allocation, each user will
experience a different channel response. This is highlighted
in Figure 1 by a bold solid line and a bold dash-dot line
that correspond to the channel responses undergone by the
users in casei) and ii), respectively. Assume that both users
transmit with the same power: therefore user 2 experiences the
minimum throughput, because of the larger distance and worse
channel effects. Also, assume that we want to maximize the
minimum throughput experienced by the users. In this light,
the throughput of user 2 must be maximized, and allocation 1
(solid line) is not optimal, because combined attenuation and
noise effects are very large, and severely limit throughput. On
the contrary, allocation 2 (dash-dot line) is optimal. A further
observation is in order here: better allocations assign lower-
frequency channels to far users, as this usually corresponds to
more favorable propagation effects. This fact uniquely depends
on the propagation characteristics of the underwater acoustic
channel, whereas in terrestrial radio all users would experience
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Fig. 1. Frequency-dependent part of the SNR for an acoustic tone transmitted
underwater, and example of band allocation to two users, one at 1 km, the
other at5 km. Grey lines represent the[A(d, f)N(f)]−1 factor for different
distances. The bold solid and dot-dashed black lines represent the non-optimal
and optimal allocation, respectively.

the same long-term channel effects in all subbands, hence
making any frequency allocation equally good (as long as each
user gets a channel).

Given the above characterization, it is useful to recall how
the channel capacity is computed for a specific scenario. To
this end, assume thatfℓ and fr are the upper and lower
frequencies of a specific channel used for communication.
Assume also that the signal to be transmitted has a spectrum
S(f). According to the Shannon-Hartley theorem, the channel
capacity is then given by

∫ fr

fℓ

log
2

(

1 +
S(f)

N(f)

)

df . (5)

Note that this definition can be applied to any signal or noise
spectrum. In the following, we will assume that the throughput
of a user on a certain channel is equal to the channel capacity,
calculated according to (5).

III. T HE CHANNEL ALLOCATION PROBLEM

In the following, we study channel allocation policies and
their effects on medium access and network performance.
To better focus on these aspects, we consider a single-hop
network, and leave the extension of this evaluation to multi-
hop settings as future work. We consider a scenario where
the available acoustic spectrum is partitioned into channels
of equal bandwidth. Each user is to be assigned to a single
channel, and each channel to a single user; we consider that,
in principle, all user-channel associations are feasible.Users
are expected to be located at different positions, and will thus
be at different distances from their destinations. As discussed
in the previous section, since attenuations and noise vary with
both frequency and distance, each user will get a different
communication capacity for each channel it could be assigned.

The channel which is optimal for a given user,i.e., the
channel which has the highest capacity for that user, is not
necessarily optimal from another user’s perspective: a high
frequency channel will be more suitable to nearby users,
whereas far users will be better off using a low frequency



channel. Unfortunately, due to the particular shape of the
attenuation-noise function, it is not possible in general that
each user be assigned its optimal channel: therefore, some
tradeoff must be achieved. We note that, in practical scenarios
where the transmission power is limited, a near user will
achieve a fairly high capacity even when using a sub-optimal
channel, whereas a far user may experience very low capacity
unless it is assigned a sufficiently low-frequency channel.In
this respect, a good channel allocation scheme will be able to
enhance the capacity of far users without sacrificing too much
the capacity of nearer users.

In this study, we discuss the implementation and the per-
formance of a max-min fair channel allocation scheme; for
this purpose, it is convenient to recall the notion of max-
min fairness here. For any feasible channel allocationx,
let C = (cx,1, cx,2, . . . , cx,N ) be its capacity vector, where
each entry indicates the capacity experienced on a particular
channel for a certain feasible allocationx. For anyx, let C be
sorted such thatcx,1 ≤ cx,2 ≤ · · · ≤ cx,N . A feasible channel
allocationy is said to be a max-min fair allocation if, for any
other feasible allocationx, cx,i ≤ cy,i ∀i.

IV. CHANNEL ALLOCATION ALGORITHM

Let N be the number of users, which in the scenario we
consider is also equal to the number of channels to be assigned.
The channel allocation problem is conveniently modeled as a
matching problem on a bipartite graph. Let the verticesi =
1, 2, . . . , N represent the users, and let the verticesj = N +
1, N + 2, . . . , 2N represent the channels. A solution to the
assignment is a setA of edges(i, j) such that

• |A| = N
• A is a matching, i.e., if (i1, j1) ∈ A and (i2, j2) ∈ A ,

then i1 6= i2 and j1 6= j2
First of all, we note that an exhaustive search algorithm is not
practical to find the max-min capacity allocation, since the
number of feasible allocations isN !. Let P be the set of all
edges which can belong to a solution,i.e., P = {(i, j)|i =
1, 2, . . . N, j = N + 1, N + 2, . . . , 2N}. Our algorithm
works by successively removing fromP the edge which has
lowest capacity, until a feasible solution is no longer present.
Let (i, j) be the edge whose removal inhibits the solution of
the problem. The capacity of(i, j) is the maximum, over all
feasible allocations, of the minima of the channel capacities
in each allocation; thus, the value of the capacity of(i, j)
will appear in the capacity vector of the max-min fair channel
allocation. In order to find a complete max-min fair solution
(i.e., all channel-user allocations), the algorithm is repeated
by removing all the edges incident in eitheri or j (because
useri and channelj have already been assigned), and solving
the same problem for the allocation ofN − 1 users onto
N − 1 channels. The algorithm terminates when all users and
channels have been allocated.

One of the key points of the algorithm is how to determine
whether a feasible solution exists. To this aim, we note that
finding a solution is the same as finding a matching overP
with cardinality equal to the number of users (and channels)
which have to be assigned. In order to do so, it suffices to find a
highest-cardinality matching (HCM) overP , which represents
an assignment that satisfies the maximum number of users.

P0 := P ; Q0 := ∅; k := 0;
while |Qk| < N do

incrementk
(i, j) := MinCapacityEdge (Pk−1)
Pk := Pk−1 \ {(i, j)}
Mk := HighestCardinalityMatching (Pk)
if |Mk| + |Qk−1| < N then

Qk := Qk−1 ∪ (i, j)
for all m such that(i, m) ∈ Pk do

Pk := Pk \ {(i, m)}
end for
for all n such that(n, j) ∈ Pk do

Pk := Pk \ {(n, j)}
end for

else
Qk := Qk−1

end if
end while
returnQk

Fig. 2. Algorithm for max-min fair channel allocation

If the cardinality of the HCM is less than the number of
users (and channels) to be allocated, then the assignment is
not complete. This indicates that the last removed arc leadsto
infeasible solutions, and therefore must not be removed.

A precise formulation of the algorithm is provided in
Figure 2. The MinCapacityEdge () operation simply re-
turns the edge which has minimum capacity in the given
set; this operation onPk can be implemented with con-
stant complexity if the edges inP0 have been sorted ini-
tially, which can be done with complexityO(N2 log N).
The HighestCardinalityMatching () operation can be solved
efficiently using well-known graph theory techniques such
as the augmenting path algorithm and the Hopcroft-Karp
algorithm [17], with complexityO(|Pk|

√
N) in the latter case.

The number of steps performed by the max-min capacity
channel allocation algorithm is bounded by the number of
edges, which isN2. Therefore, the overall complexity of our
algorithm isO(N4

√
N), and the cost of initially sortingP0

is negligible.

V. PERFORMANCEEVALUATION

We compare the performance of our cognitive channel
allocation scheme with a traditional fixed allocation approach.
The comparison is carried out by means of simulation, using
the NS-Miracle framework [18] together with a module we
developed specifically for this study, and which implements
the channel model discussed in Section II [19]. We considered
a scenario where the network nodes must transmit data to a
common sink. The sink is placed in the middle of a square
area of given size; a varying number of users is randomly
placed in this area. All users transmit using a channel allocated
in the 10 kHz–40 kHz band. For this purpose, the band has
been subdivided into as many equal-bandwidth channels as
the number of users. All users transmit a signal with a power
spectral density of97 dB re µPa per Hz in the allocated band,
and zero outside the band.2 We implemented our cognitive
channel allocation scheme in a centralized controller which is

2In other words, we assume an ideal spectral mask. This is of course not
what would happen in reality; however, we note that accounting for a realistic
transmission mask is possible and would not change qualitatively our results.
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assumed to have knowledge of the capacity of each potential
channel-user association.3 To evaluate the performance of
our cognitive channel allocation algorithm, we compare it
to a traditional FDMA solution in which the user-channel
association is fixed (i.e., channel 1 is always assigned to user
1, channel 2 always to user 2, and so forth), regardless of
their position and hence of the capacity that could be actually
achieved over each channel. Simulations have been run for
different values of the number of users and of the size of the
square area. For each specific pair of these values, the obtained
performance was averaged over1000 independent random user
placements.

In Figure 3, we report the average minimum capacity
achieved by the two schemes as a function of the area size. As
expected, the cognitive allocation scheme achieves significant
performance improvements over the fixed allocation approach.
These improvements are up to more than one order of mag-
nitude at sufficiently large area size (e.g., 0.3 kbps against
3 kbps for 6 nodes and area size9 km). It should be noted
that all curves related to the cognitive approach have smaller
slope, with respect to the fixed allocation (dubbed “fdma”)
curves. Therefore, the performance improvement achieved by
the cognitive method increases for increasing area size. In
fact, in this case the distances of the users from the sink
tend to be sufficiently different from one another, yieldinga
higher variability in the channel response experienced by each
user on each channel. Therefore, the cognitive scheme can
successfully exploit more degrees of freedom, and has a better
opportunity to find an allocation that substantially improves
the minimum throughput. On the other hand, when the area is
small, the distance of different users to the sink is similarand
relatively short, and all users tend to get similar performance
from all channels; consequently, there is no significant room
for optimization, and the fixed allocation scheme performs
similarly to the cognitive scheme. Note that this is a direct
consequence of the effects of underwater propagation. For
illustration, refer to Figure 1: if the distances of all users are on
the order of1 km, the channel response has limited variability

3This could be achieved in practice through feedback information provided
by the users. Alternatively, some location information couldbe exploited
together with a channel model such as the one described in Section II.
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with respect to both distance and frequency. Conversely, if
the distances vary from hundreds of meters to10 km or
more, the channel response would differ by several tens of
dBs, and in addition it would be much more variable with
frequency, making it more effective to assign low-frequency
channels to farther users. Therefore, the cognitive algorithm
can achieve a more significant improvement over the fixed
allocation approach.

The performance difference between the cognitive and the
fixed scheme strongly depends on the number of network
nodes as well. As expected, the min throughput decreases
for increasing number of nodes, regardless of the scheme,
because the size of the channels is smaller, and hence the
channel capacity is also smaller. However, a greater number
of users translates into more degrees of freedom available
for the cognitive algorithm, which therefore achieves a better
performance for the same reasons described before. In fact,the
average min throughput curves of the fixed allocation scheme
show a steeper slope for greater numbers of nodes, whereas for
the cognitive algorithm all curves have roughly the same slope.
Hence we can conclude that the cognitive approach scales well
with respect to both the number of users and the area size.

In Figures 4 and 5, we report the cumulative distribution
function of the capacity achieved by all users,i.e., the prob-
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ability that the capacity achieved by a user placed randomly
in an area of given size is less than or equal to the value of
the abscissa. We consider two different cases, with10 and30
nodes (in Figures 4 and 5, respectively), and four different
values for the area size. We observe that, for low values of
the distance (the right-most curves) the capacity distribution
obtained with the two schemes is similar. Conversely, as the
area size increases, the fixed FDMA scheme has a higher low-
capacity tail, revealing that the suboptimal allocations force
more often some of the users to operate in very low capacity
channels. The cognitive scheme exhibits a steeper distribution
which again confirms that capacity is distributed more fairly
to all users. This behavior is more visible for denser networks
(Figure 5): with more nodes, the fixed allocation scheme
assigns low-capacity channels with even higher probability,
whereas the cognitive approach can exploit the greater number
of degrees of freedom coming from the different channel
responses experienced by different users.

In order to understand the importance of the tails of the
capacity distributions, Figure 6 shows the probability density
function (pdf) of the capacity for the caseN = 30 users,
and Table I reports the average value and relevant statistical
dispersion values (the standard deviation and the 10th and 90th

percentiles,P10 andP90) for area size equal to0.5 km or 4 km.
We observe that the capacity distributions achieved by the
cognitive scheme are more concentrated around their average
value. The fixed allocation, while achieving similar results for
small area sizes, leads to more dispersed capacity values and
hence to worse fairness for larger areas.

From these results, we can conclude that the proposed
cognitive allocation scheme can effectively support larger
networks and wider deployment areas, and provide greater
fairness for all nodes and an overall better use of network
resources in the highly constrained underwater scenario.

VI. CONCLUSIONS

In this paper, we have proposed and evaluated a cognitive
channel allocation technique for underwater acoustic networks.
Being based on FDMA, this scheme does not suffer from the
detrimental effects of huge propagation times, which would
limit the use of TDMA and CSMA schemes in practical
underwater scenarios. Moreover, a cognitive channel selection

TABLE I

STATISTICAL DISPERSION INDICES FORFIGURE 6 (CAPACITIES IN KBPS)

Size Method Mean σ P10 P90

0.5 km
Cognitive 10.7 0.883 9.59 11.6
FDMA 10.7 1.46 9.14 12.6

4 km
Cognitive 2.44 1.77 0.954 4.14
FDMA 2.51 2.44 0.053 5.79

scheme, which accounts for the particular features of the
underwater channel, allows a more fair and efficient spectrum
use, greatly outperforming traditional fixed-allocation FDMA.
Finally, the proposed scheme is general and can be applied
in practice to different definitions of channel capacity and
actual modulation/coding schemes. Future work on this topic
includes a comparison with other dynamic channel allocation
techniques and the design and evaluation of practical cognitive
schemes that enable distributed acoustic spectrum access.
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2007, Montréal, Canada, 2007, pp. 3–4, invited talk. [Online]. Available:
http://wuwnet07.engr.uconn.edu/slides/SeawebWUWNet talk.ppt

[5] M. Stojanovic, “On the relationship between capacity and distance in an
underwater acoustic communication channel,” inProc. ACM WUWNet,
Los Angeles, CA, Sept. 2006, pp. 41–47.

[6] P. Casari, S. Marella, and M. Zorzi, “A comparison of multiple
access techniques in clustered underwater acoustic networks,” in
Proc. IEEE/OES Oceans, Aberdeen, Scotland, June 2007.

[7] Jose dos Santos Coelho, “Underwater acoustic networks:evaluation of
the impact of media access control on latency in a delay constrained
network,” Master’s thesis, Naval Postgraduate School, Monterey, CA,
Mar. 2005.

[8] IEEE Standards Department,IEEE Standard 802.11. IEEE Press, 1999.
[9] L. G. Roberts, “ALOHA packet system with and without slots and

capture,” ACM SigComm Computer Communication Review, vol. 5,
no. 2, pp. 28–42, 1975.

[10] X. Guo, M. Frater, and M. Ryan, “A propagation-delay-tolerant colli-
sion avoidance protocol for underwater acoustic sensor networks,” in
Proc. IEEE Oceans, Singapore, Sept. 2006.

[11] B. Peleato and M. Stojanovic, “A MAC protocol for ad hoc underwater
acoustic sensor networks,” inProc. ACM WUWNet, Los Angeles, CA,
Sept. 2006, pp. 113–115.

[12] M. K. Park and V. Rodoplu, “UWAN-MAC: an energy-efficient MAC
protocol for underwater acoustic wireless networks,”IEEE J. Ocean.
Eng., 2007, to appear. [Online]. Available: http://www.ece.ucsb.edu/
rodoplu/Pubs/ParkRodopluUWANMAC.pdf

[13] S. Haykin, “Cognitive radio: brain-empowered wirelesscommunica-
tions,” Selected Areas in Communications, IEEE Journal on, vol. 23,
no. 2, pp. 201–220, 2005.

[14] J. Mitola, “Cognitive radio: an integrated agent architecture for software
defined radio,” Ph.D. dissertation, Royal Institute of Technology (KTH),
2000.

[15] R. Urick, Principles of Underwater Sound. McGraw-Hill, 1983.
[16] L. Berkhovskikh and Y. Lysanov,Fundamentals of Ocean Acoustics.

Springer, 1982.
[17] J. E. Hopcroft and R. M. Karp, “Ann5/2 algorithm for maximum

matchings in bipartite graphs,”SIAM Journal on Computing, vol. 2,
no. 4, pp. 225–231, 1973.

[18] N. Baldo, F. Maguolo, M. Miozzo, M. Rossi, and M. Zorzi, “Ns2-
miracle: a modular framework for multi-technology and cross-layer
support in network simulator 2,” inACM NSTools, Nantes, France,
October 2007.

[19] “Model for underwater channel in ns2,” 2007. [Online].Available:
http://www.dei.unipd.it/research/signet/tools/nsunderwater


