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Abstract— While very successful in traditional radio communi- ~ chosen depending on the expected communication distance.
cations, the usage of TDMA and CSMA schemes for underwater Furthermore, acoustic transducers are much more energy-
acoustic communications is severely limited in efficiency and scal- consuming than radios, requiring transmission schemess tha

ability, primarily due to the very large propagation delays. FDMA .
seems a viable alternative in that the propagation delay does S@V€ @S much energy as possible. These facts need to be taken

not impact significantly its efficiency. However, in underwater iNto account in the design of any underwater network.
communications, the capacity achievable on a particular channel ~ While the research on underwater communications networks
depends strongly both on its frequency and on the communication js still in its infancy, some recent efforts have outlined
detance, unik I vadiional adio tansmissons uhere FOMA  tne main performance diferences of classc terrestrdora
channel allocation schemes traditionally used for radio FbMA access schemes a$ appllgd to aCOl:'St_'C Comm_un'cat,'qnfs' For
do not perform well in underwater communications. example, [3] contains a first descrlptlon of Time-Division

In this paper, we investigate the application of the principles and Frequency-Division Multiple Access (TDMA and FDMA)
of cognitive radio and dynamic spectrum access to underwater schemes, as well as a preliminary evaluation of clusters,
communications. In particular, we propose a channel allocation \yhich are also considered in [6], where different options fo

scheme which exploits user location knowledge in order to fint lust d clusterhead-to-sink icatiaveh
maximize the minimum channel capacity among those achieved O Intra-cluster and clustérnead-to-sink communicatiaw

by the users. This provides maximum fairness and makes a more been compared. Carrier Sense Multiple Access (CSMA) has

efficient use of the available spectrum resources. also been evaluated [7] and compared to handshake-based
Performance evaluation carried out by means of simulation schemes such as the IEEE 802.11 RTS/CTS-based access [8],

shows that our approach can achieve a great improvement in 4 rely on the exchange of control messages prior to data

fairness among users, with respect to fixed allocation schemes, P h . luSi h K
while at the same time scaling much better and thus allowing ransmission. The main conclusions drawn by these works can

effective communications over larger distances. be summarized as follows. TDMA suffers from bad Scalabi”ty
performance degrades rapidly as the number of nodes or the
|. INTRODUCTION AND RELATED WORK network deployment size increases. In fact, in order togatot

Underwater communications are currently a hot researtife transmission occurring in a time slot from the intenfiee
topic in the wireless communications field. The main differeaused by other transmissions in adjacent slots, a guasd tim
ence with respect to terrestrial communications is founhén must be inserted. This guard time must be at least as long
specific physical layer, which usually relies on acoustivega as the maximum propagation delay in the network. Since the
This is not the only option for underwater transmissiong, yacoustic waves travel very slowly in water, the guard tines c
it is seemingly the only one to provide sufficient coverage arbe long, requiring in turn to have long data transmissioreim
data rate. In fact, radio waves are typically absorbed dyilok in order to preserve efficiency. On the other hand, random
water, unless transmission is performed at very low frequenaccess schemes such as CSMA and ALOHA [9] are very
which in turn severely limits the data rate. Optical sigreals vulnerable to collisions due, again, to the long propagatio
an option as well but, despite the higher data rate, theytiendiimes. Preliminary handshakes do not offer much help in this
have very limited coverage and to require good alignment ofse, because the exchange of control messages would take
transmit and receive devices. Conversely, recent advances lot of time and decrease communication efficiency even
acoustic communications have allowed to build reliablé&din further. Additionally, recall that transmissions are venergy-
over distances on the order of kilometers [1], [2], effeeljy demanding, thus collisions should be avoided or limited in
paving the way for the creation of the first underwater wgsle order not to waste energy. In trying to overcome the issues
networks [3], [4]. of TDMA and CSMA, other protocols designed explicitly for

Underwater acoustic communications present many diffarnderwater networks are based on the balance between data
ences with respect to radio communications. First of atkansmissions, control messages, and sometimes awaepas!
acoustic waves propagate in water at a very low speed schedules. For example, [10] tries to avoid collisions com-
1.5km/s, which is five orders of magnitude smaller thampletely by carefully scheduling the length of the handskake
the propagation speed of radio waves in the air. Moreovevhereas [11] can space transmissions more tightly, as it
as we will discuss in Section Il, the attenuation incurretties to prevent collisions through specific signaling nragss.
by the signal and the receiver noise have a very strotyVAN-MAC [12] is based on a sort of adaptive TDMA,
dependence on distance and frequency [5]. As a consequemdggre nodes try to synchronize their awake-sleep schedules
when designing an underwater communication system, tHewever, as for the basic TDMA case, the transmission epochs
transmission frequency and bandwidth should be carefuliyust be separated by guard times, which limits efficiency.



To summarize, the major issues with MAC schemes whidbr the underwater acoustic spectrum which conforms to this
operate entirely in the time domain are limited efficiencgefinition of the cognition cycle. First of all, the propaigat
and poor scalability due to the huge underwater propagatiscene is analyzed, determining the number of users and
delay. For this reason, FDMA becomes very attractive, as ttse possible spectrum allocations; then the capacity of eac
efficiency is not affected by long propagation delays. Actiechannel-user allocation is determined (note that capasity
ally, using FDMA imposes greater signal processing effortdirectly dependent on distance, which in turn can be acelyrat
because the underwater channel tends to be highly timantariestimated during a setup phase by means of round-trip time
and to create significant Doppler shifts. However, poweahd measurements); finally, the most fair allocation is sebkcte
efficient algorithms for compensating channel effects @iad In the rest of this paper, after a brief introduction on the
actively researched in the communitg.q, see [1], [2] and underwater acoustic channel, we will describe in detail our
references therein), making FDMA an increasingly feasibbolution, and show how it can achieve a more fair acoustic
option. spectrum usage with respect to traditional techniques asch

On the other hand, one of the main concerns with the uB®MA with a priori fixed channel assignment.
of FDMA in underwater communications is that the fixed
channel allocation schemes traditionally employed in aadi Il. CHANNEL MODEL

communications are expected to yield low efficiency and poor |n this Section, we give a brief overview of the physics of
fairness, due to the strong interplay between communitatigcoustic propagation in water. The purpose of the following
performance and the particular frequency band being used.t§ help the reader understand the tradeoffs found in spactru
address these issues, we propose a Cognitive Radio approgfifcation for underwater communications. A more in-depth
In [13], Cognitive Radio is defined as an intelligent devidéw description is beyond the scope of this paper, and can belfoun
the aim of providing an efficient utilization of the spectrioy  in [5], [15].

means of dynamic and opportunistic spectrum actéssra-  First of all, recall that acoustic waves propagate in salted
ditional radio communications, the use of the electromtignewater at a slow speed= 1500 m/s. The actual propagation
spectrum is very inefficient: some portions such as the unpeed is affected by depth, temperature, and salinity, fut w
censed ISM bands are often overcrowded, while others sugly consider it fixed for simplicity. However, perhaps the
as the licensed TV bands are often underused. In recent yegigst important feature of the underwater acoustic channel
it has been proposed to overcome this problem by allowifg the dependence of the optimal transmission frequency
unlicensed access to licensed bands, whenever and whergygf bandwidth on the distance between the communicating
they are not in use by their licensee. As a consequence,nifdes [5]. To explain this, consider Urick's model for the

addition to the unlicensed bands, which can be very congestgtenuation of a tone transmitted at frequerfcjl5]:
at some times and locations, a radio device might also be

able to access some licensed portions of the spectrum, again A(d, f) = d*a(f)". @

depending on time and location. Cognitive Radio devices gfgere is the distance between transmitter and receiver, and
expected to achieve a more efficient spectrum utilization Byis the counterpart of the path loss coefficient in terreistria
ade.lptmg to this gva|labll|_ty of_communlcanon resourcesch radio, and is used to model the geometry of propagation. A
varies greatly with location, time and frequency. __practical valuek = 1.5 is usually adopted. The factax f) in
Underwater acoustic communications are somewhat S|m|%|) is called the absorption loss, and models the conversion

to radio communications in this respect: as we will discuggoustic pressure into heat. This factor can be approximate
in Section Il, the performance of the communication haskfy Thorp’s formula [16]:

strong dependence on both the portion of the spectrum in use ) )

and the location of the user; moreover, the underwater #icous ¢y _ 0.11f 44f 427510742 1 0.003, (2)
spectrum is very scarce, and thus the communication ressurc 1+ /2 4100 + f2 ' T
available to a single user strongly depend on the number ere A(f) = 10log,, a(f). Equation (2) returns:(f) in

_ ngle . Imber g
active users, which in turn depends on time and location. As & /km for 7 in kHz. It should be noted from the formulas
consequence, the dynamic spectrum access techniques WE‘& e that the attenuation increases with frequency ard tha

have been developed for radio communications are expecjg presence of the exponential teaty)* in (1) strengthens
to be effective for underwater communications as well. the dependence of attenuation on distance

The procedure followed by a Cognitive Radio device 0 e hoise power spectral density (psd) is also frequency-
access the spectrum is described bydbgnition cyclewhich — yohendent, and is usually expressedééf) — Ni(f) +

in [13] is defined by the following phases: Ixdio-scene N N TN, where the riaht hand side denotes
analysis 2) channel identificationwhich in particular includes thg(étperp%g{%on Otfhg&'r contributiongz turbulence (sulps

the prediction of channel capacity; 3jynamic spectrum t), shipping and other human activities),(wind and waves

access|n this paper, we propose a dynamic access techniqy " anq thermal noise in the receiver circuitrh). These
components can be modeled as follows [5]:

11t is worth noting that the original definition of CognitiveaRio by
Mitola [14] had a very broad scope and was not by any means HmiteA/t(f) = 17-130 10g10(f)
to dynamic spectrum access. However, since the work by Hajksj,

dynamic spectrum access has become the most frequently gatestiuse N (f) = 40 +20(s—0.5) + 261og,(f) — 601log,o(f+0.03)
case for Cognitive Radio, to the point that a Cognitive Radiday is most _ _

commonly referred to as an intelligent communication devicefopeing M”(f) = 50+ 7.5\/E+ 20 loglo(f) 40 10%10(f+0-4)
dynamic spectrum access. Nin(f) = =15+ 20log,(f), 3)



where NV, (f) stands forl0log,q N.(f), = € {t, s,w,th}.
Moreover,s in N(f) is theshipping factor representing the

intensity of shipping activities on the surface of the water ‘

and has values ranging betweénand 1. The factorw in
N, (f) is the wind speed inm/s. The different components

impact the noise psd at different frequencies. For example,
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in the high portion of the acoustic spectrum, typically used
for transmissions over short distances (tens of meters), th
turbulence and shipping components have very little effect
whereas the other two can become dominant.
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We are now ready to define the average SNR of a tone

User 2,

Channel 2 d=5km

transmitted at frequency and traveling a distance as [5]

Pr

SNR(d, f) = —————r, 4
D= A pN AT @
where P is the transmit power and/(f) is the noise power
spectral density (assumed constant in a narrow band
aroundf). In (4), the factof A(d, f)N(f)]~! is the frequency-
dependent term. It should be noted tht, f) increases with
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Fig. 1. Frequency-dependent part of the SNR for an acowsii transmitted
underwater, and example of band allocation to two users, brigkm, the
other at5 km. Grey lines represent tHed(d, f) N (f)] ! factor for different
distances. The bold solid and dot-dashed black lines reptéilse non-optimal
and optimal allocation, respectively.

frequency whileN(f) decreases (at least to a certain point).
Hence, the inverse of the product of the two factors has a

maximum for some frequency. This maximum representsthe same long-term channe_l effects in all subbands, hence
the best frequency to use to transmit the tone. making any frequency allocation equally good (as long ak eac
) _ o i ) ) ~_user gets a channel).

Since the main objective of this paper is to devise efficient Gjven the above characterization, it is useful to recall how
and fair channel allocation schemes, it is important to Ufhe channel capacity is computed for a specific scenario. To
derstand the impact of frequency-dependent channel sffegfis end, assume thaf, and f, are the upper and lower
on allocation policies. To this end, we show in Figure jrequencies of a specific channel used for communication.
the frequency-dependent factor in (4)4(d, f)N(f)]™*, for  Assume also that the signal to be transmitted has a spectrum
a number of values ofl. Each gray line corresponds t0 &g ). According to the Shannon-Hartley theorem, the channel
different distance; some relevant distance values ardedbecapacity is then given by
for illustration. This figure shows that there is in fact an
optimal frequencyf, where a transmitted tone incurs the most /fr o (1 n S(f)) af )
favorable propagation/noise conditions, depending diace. o &2 N(f) ’

A channel allocation example is also shown in Figure 1. . - : . :
simple case is considered, where two users share a commlic, that this definition can be applied to any signal or noise
bandwidth to transmit to a sink. User 1li&m away, whereas spectrum. In the follpwmg, we V.V'” assume that the througihp .
user 2 is located farther, at a distance5aim from the sink. of a user on a certain channel is equal to the channel capacity
The system bandwidth spans frob kHz to 40kHz, and calculated according to (5)-

is divided into two equally wide channgls QBkH; eac.h._ . THE CHANNEL ALLOCATION PROBLEM

Only two different allocations are possible in this casg:

user 1 on channel 1 and user 2 on channel 2jipwice- In the following, we study channel allocation policies and
versa. According to the chosen allocation, each user wilieir effects on medium access and network performance.
experience a different channel response. This is higlimyhtTo better focus on these aspects, we consider a single-hop
in Figure 1 by a bold solid line and a bold dash-dot lineetwork, and leave the extension of this evaluation to multi
that correspond to the channel responses undergone by hthp settings as future work. We consider a scenario where
users in case) andi:), respectively. Assume that both userghe available acoustic spectrum is partitioned into chknne
transmit with the same power: therefore user 2 experiemees of equal bandwidth. Each user is to be assigned to a single
minimum throughput, because of the larger distance andevorhannel, and each channel to a single user; we consider that,
channel effects. Also, assume that we want to maximize theprinciple, all user-channel associations are feasibkers
minimum throughput experienced by the users. In this lighaiye expected to be located at different positions, and ikt
the throughput of user 2 must be maximized, and allocationbg at different distances from their destinations. As dised
(solid line) is not optimal, because combined attenuatioth ain the previous section, since attenuations and noise vihy w
noise effects are very large, and severely limit through@ut both frequency and distance, each user will get a different
the contrary, allocation 2 (dash-dot line) is optimal. Athar communication capacity for each channel it could be assigne
observation is in order here: better allocations assigretew The channel which is optimal for a given usee. the
frequency channels to far users, as this usually corresptind channel which has the highest capacity for that user, is not
more favorable propagation effects. This fact uniquelyethels necessarily optimal from another user’s perspective: @ hig
on the propagation characteristics of the underwater gicousrequency channel will be more suitable to nearby users,
channel, whereas in terrestrial radio all users would égpee whereas far users will be better off using a low frequency



channel. Unfortunately, due to the particular shape of thevli(;\ii; %HEON}%’ ki=0;
attenuation-noise function, it is not possible in genehait t incrementk

each user be assigned its optimal channel: therefore, some (; ;) := MinCapacityEdge (P_1)
tradeoff must be achieved. We note that, in practical séenar Py = P11\ {(i,7)}

where the transmission power is limited, a near user will M, := HighestCardinalityMatching ( Py )
achieve a fairly high capacity even when using a sub-optimal if [Mx| +[Qk—1| < N then

channel, whereas a far user may experience very low capacity =~ @r = Qr-1 U (i,j)

unless it is assigned a sufficiently low-frequency chanirel. for all m such that(i,m) € P do
this respect, a good channel allocation scheme will be able t By = P\ {(i,m)}

- . o end for
enhance the capacity of far users without sacrificing toohmuc for all n such that(n, j) € Py do
the capacity of nearer users. Py := P \ {(n,j)j,

In this study, we discuss the implementation and the per- end for
formance of a max-min fair channel allocation scheme; for else

this purpose, it is convenient to recall the notion of max- Q= Qr—1

min fairness here. For any feasible channel allocatign gndhl'fl

let C = (co1,Ca,-..,¢on) be its capacity vector, where (ra:tur\;]vcgle

each entry indicates the capacity experienced on a paaticul k

channel for a certain feasible allocationFor anyz, let C' be Fig. 2. Algorithm for max-min fair channel allocation

sorted such that, ; < ¢z <--- < ¢, n. A feasible channel
allocationy is said to be a max-min fair allocation if, for any

other feasible allocation, ¢, ; < ¢, ¥i. If the cardinality of the HCM is less than the number of

users (and channels) to be allocated, then the assignment is
IV. CHANNEL ALLOCATION ALGORITHM not complete. This indicates that the last removed arc leads

o . infeasible solutions, and therefore must not be removed.
Let NV be the number of users, which in the scenario we 5 precise formulation of the algorithm is provided in

consider is also equal to the number of channels to be asisigqelgure 2. The MinCapacityEdge () operation simply re-
The channel allocation problem is conveniently modeled ag;gns the edge which has minimum capacity in the given
matching problem on a bipartite graph. Let the vertices et thig operation onP, can be implemented with con-
1,2,..., N represent the users, and let the vertiges N + giant complexity if the edges i, have been sorted ini-
1,N +2,...,2N represent the channels. A solution to thﬁally, which can be done with complexity)(N?2 log N).

assignment is a set of edges(i, j) such that The HighestCardinalityMatching () operation can be solved
o« |[A|=N efficiently using well-known graph theory techniques such
o Ais amatchingi.e, if (i,5;) € A and(i2,j2) € A, as the augmenting path algorithm and the Hopcroft-Karp
theni; # i, andj; # jo algorithm [17], with complexityO(| P, |v/N) in the latter case.

First of all, we note that an exhaustive search algorithnois nThe number of steps performed by the max-min capacity
practical to find the max-min capacity allocation, since thehannel allocation algorithm is bounded by the number of
number of feasible allocations &!. Let P be the set of all edges, which isV>. Therefore, the overall complexity of our
edges which can belong to a solutidre, P = {(i,j)[i = algorithm isO(N*\/N), and the cost of initially sorting
1,2,...N, j = N+ 1,N +2,...,2N}. Our algorithm is negligible.

works by successively removing froifi the edge which has V. PERFORMANCEEVALUATION

lowest capacity, until a feasible solution is no longer preas .

Let (7,7) be the edge whose removal inhibits the solution of We compare the performance of our cognitive channel
the problem. The capacity df, j) is the maximum, over all allocation scheme with a traditional fixed allocation agmin.
feasible allocations, of the minima of the channel capasiti "€ comparison is carried out by means of simulation, using
in each allocation; thus, the value of the capacity(aff) the NS-Miracle framework [18] together with a module we
will appear in the capacity vector of the max-min fair channéleveloped specifically for this study, and which implements
allocation. In order to find a complete max-min fair solutiot€ channel model discussed in Section Il [19]. We consitlere
(i.e., all channel-user allocations), the algorithm iseaed 2 scenario where the network nodes must transmit data to a
by removing all the edges incident in eitheor j (because Common sink. The sink is placed in the middle of a square
useri and channej have already been assigned), and solvirgf€@ Of given size; a varying number of users is randomly
the same problem for the allocation &f — 1 users onto paced in this area. All users transmit using a channel atkt

N — 1 channels. The algorithm terminates when all users affti the 10kHz—40kHz band. For this purpose, the band has
channels have been allocated. been subdivided into as many equal-bandwidth channels as
One of the key points of the algorithm is how to determinf'€ number of users. All users transmit a signal with a power
whether a feasible solution exists. To this aim, we note thgRectral density a7 dB re uPa per Hz in the allocated band,
finding a solution is the same as finding a matching aver and zero outside the baAdwe implemented our cognitive
with cardinality equal to the number of users (and channe@j‘a””3| allocation scheme in a centralized controller tvisgc

which have to be assigned. In order to do so, it suffices to find aIn other words, we assume an ideal spectral mask. This is oseaunt

highest-cardinality matching (HCM) ove?, which represents ynat would happen in reality; however, we note that accogriibr a realistic
an assignment that satisfies the maximum number of userssmission mask is possible and would not change quaditatawr results.
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Fig. 3. Observed performance for the considered chann&aditm schemes.  Fig. 4. Cumulative Distribution Function of the capacity fd nodes.

30 nodes

assumed to have knowledge of the capacity of each potential
channel-user associatinTo evaluate the performance of
our cognitive channel allocation algorithm, we compare it
to a traditional FDMA solution in which the user-channel
association is fixedie. channel 1 is always assigned to user

1, channel 2 always to user 2, and so forth), regardless af 06 0 y:
their position and hence of the capacity that could be algtual g 0% b Ima, 0.5k
achieved over each channel. Simulations have been run f8r o4 £t 5. 4 O ma, Tkm o |

Z,‘r cognitive, 1km e
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different values of the number of users and of the size of the
square area. For each specific pair of these values, thenettai
performance was averaged ou@00 independent random user
placements.

In Figure 3, we report the average minimum capacity 0
achieved by the two schemes as a function of the area size. As capacity (kbps)
expected, the cognitive allocation scheme achieves signifi
performance improvements over the fixed allocation approac Fig. 5. Cumulative Distribution Function of the capacity &0 nodes.
These improvements are up to more than one order of mag-
nitude at sufficiently large area size.q, 0.3kbps against
3kbps for 6 nodes and area sizekm). It should be noted
that all curves related to the cognitive approach have gmal
slope, with respect to the fixed allocation (dubbed “fdma’

curves. Therefore, the performance improvement achieyed uency. making it more effective to assian low-frequenc
the cognitive method increases for increasing area size. N Y. 9 9 que

fact, in this case the distances of the users from the siﬁ'ﬂannels to farther users. Therefore, the cognitive digori
tend to be sufficiently different from one another, yieldiag can achieve a more significant improvement over the fixed

higher variability in the channel response experiencedadmhe allocation approach.
user on each channel. Therefore, the cognitive scheme %aﬂ-he performance difference between the cognitive and the

successfully exploit more degrees of freedom, and has arbe p<ed scheme strongly depends on .the number of network
nodes as well. As expected, the min throughput decreases

opporFu_nity to find an allocation that substantially impeev far increasing number of nodes, regardless of the scheme
the mimmum throughpqt. On the other hand,'wh'en t.he_ areab(?écause the size of the channe’ls is smaller, and hence thé
small, the distance of different users to the sink is sinliad 7 '

channel capacity is also smaller. However, a greater number

relatively short, and all users tend to get similar perfanoea . .
from all channels; consequently, there is no significantrrooOf users translates into more degrees of freedom available

for optimization, and the fixed allocation scheme perforrrfgr the cognitive algorithm, which theref(_)re achieves adret
erformance for the same reasons described before. IrtHact,

similarly to the cognitive scheme. Note that this is a dired X . .
consequence of the effects of underwater propagation. FErage min throughput curves of the fixed allocation scheme
illustration, refer to Figure 1: if the distances of all usare on S"OW & s;tgepelr slo_{)he for"greater r;}umbers Ofl:lnc;ﬂeS' whemﬂi\as fo
the order ofl km, the channel response has limited variabilit € cognitive algorithm afl curves have roughly th€ Sampesio
ence we can conclude that the cognitive approach scalés wel
SThis could be achieved in practice through feedback infoiongtrovided with re_spect to both the number of users and .the a.'rez.i SI.Ze'
by the users. Alternatively, some location information coblel exploited 1N Figures 4 and 5, we report the cumulative distribution
together with a channel model such as the one described iipBétt function of the capacity achieved by all useis,, the prob-

e
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o

with respect to both distance and frequency. Conversely, if

}he distances vary from hundreds of meters Itbkm or
ore, the channel response would differ by several tens of

%‘Bs, and in addition it would be much more variable with



TABLE |
STATISTICAL DISPERSION INDICES FORFIGURE 6 (CAPACITIES IN KBPS)

[ Size [ Method [Mean | o [ Pio [ Pso |
0.5 km Cognitive | 10.7 | 0.883 | 9.59 | 11.6
’ FDMA 10.7 1.46 9.14 | 12,6
Akm Cognitive | 2.44 1.77 | 0.954 | 4.14
FDMA 2.51 2.44 | 0.053 | 5.79

scheme, which accounts for the particular features of the
underwater channel, allows a more fair and efficient spettru
use, greatly outperforming traditional fixed-allocatioDNA.
Finally, the proposed scheme is general and can be applied

30 nodes
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Fig. 6. Probability Density Function of the capacity for 36des.

in practice to different definitions of channel capacity and
actual modulation/coding schemes. Future work on thisctopi
includes a comparison with other dynamic channel allooatio
technigues and the design and evaluation of practical tiogni

schemes that enable distributed acoustic spectrum access.

ability that the capacity achieved by a user placed randomly
in an area of given size is less than or equal to the value of
the abscissa. We consider two different cases, witand30  [1]
nodes (in Figures 4 and 5, respectively), and four different
values for the area size. We observe that, for low values gf
the distance (the right-most curves) the capacity didtigbu
obtained with the two schemes is similar. Conversely, as t
area size increases, the fixed FDMA scheme has a higher low-
capacity tail, revealing that the suboptimal allocationscé  [4]
more often some of the users to operate in very low capacity
channels. The cognitive scheme exhibits a steeper ditibu [5]
which again confirms that capacity is distributed more Yairl

to all users. This behavior is more visible for denser nekwor (6]
(Figure 5): with more nodes, the fixed allocation scheme
assigns low-capacity channels with even higher probgpilit
whereas the cognitive approach can exploit the greater aum
of degrees of freedom coming from the different channel
responses experienced by different users.

In order to understand the importance of the tails of th%
capacity distributions, Figure 6 shows the probability sign
function (pdf) of the capacity for the cas¥ = 30 users,
and Table | reports the average value and relevant stafistic!
dispersion values (the standard deviation and thedrtd 9d
percentiles Py and Py) for area size equal t@.5 km or4km. [11]
We observe that the capacity distributions achieved by the
cognitive scheme are more concentrated around their axerag)
value. The fixed allocation, while achieving similar resutir
small area sizes, leads to more dispersed capacity values an
hence to worse fairness for larger areas. [13]

From these results, we can conclude that the proposed
cognitive allocation scheme can effectively support large ,
networks and wider deployment areas, and provide greater
fairness for all nodes and an overall better use of network

resources in the highly constrained underwater scenario. [16]

VI. CONCLUSIONS [17]

In this paper, we have proposed and evaluated a cognitive
channel allocation technique for underwater acoustic OBV g,
Being based on FDMA, this scheme does not suffer from the
detrimental effects of huge propagation times, which would
limit the use of TDMA and CSMA schemes in practicaj,q
underwater scenarios. Moreover, a cognitive channel sahec
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