World Ocean Simulation System (WOSS):
A Simulation Tool for Underwater Networks
with Realistic Propagation Modeling

Federico Guerra, Paolo Casari, Michele Zorzi

Department of Information Engineering, University of Padova
Via G. Gradenigo, 6/B, 35131 Padova, ltaly

{fguerra,casarip,zorzi}@dei.unipd.it

ABSTRACT

Network simulators are a fundamental tool for the performance
evaluation of protocols and applications in complex scenarios, which
would be too expensive or infeasible to realize in practice.

With the aim to provide a shared environment for the simulation
of underwater networks we have adapted the ns2 network simula-
tor to provide a detailed reproduction of the propagation of sound
in water (i.e., by means of ray tracing instead of empirical rela-
tions). This has been tied to formerly available simulation frame-
works (such as the MIRACLE extensions to ns2) to provide a com-
pletely customizable tool, including acoustic propagation, physical
layer modeling, and cross-layer specification of networking pro-
tocols. In this paper, we describe our tool, and use it for a case
study involving the comparison of three MAC protocols for under-
water networks over different kinds of physical layers. Our results
compare the transmission coordination approach chosen by each
protocol, and show when it is better to rely on random access, as
opposed to loose or tight coordination.

Categories and Subject Descriptors
C.2.8 [Communication/Networking and Information Technol-

ogy]: Mobile Computing

General Terms

Design, Experimentation

Keywords

Underwater networks, simulation, MAC protocols, propagation mod-

eling, Bellhop, JANUS, periodic traffic, event-driven traffic

1. INTRODUCTION

Underwater networks are foreseen to provide a fundamental tool
for supporting a wealth of applications requiring the use of mo-
bile as well as fixed nodes in diverse fields, from environmental

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WUWNet’09, November 3, 2009, Berkeley, CA, USA.

Copyright 2009 ACM 978-1-60558-821-6 ...$5.00.

monitoring to support in answering distress calls, intrusion detec-
tion, and so forth. In light of these developments, there is growing
interest in underwater acoustic networking. Underwater network-
ing studies have covered many fields to date, from channel access,
to routing and topology control [1, 2, 3]. However, at-sea exper-
imentation of proposed solutions incurs high costs for underwater
nodes (especially mobile ones), ships, boats, and sea-trained per-
sonnel. This is the main reason why such networks and the related
protocols are much more frequently simulated rather than deployed
and experimented at sea. While some efforts exist to build cheaper
nodes with lower transmission range and scale down experiments
to smaller network sizes and areas' [4], indeed simulation is a fun-
damental tool to perform preliminary network evaluations: in par-
ticular, it could help pick the best approach out of a number of
candidates for actual implementation.

Unfortunately, there is no standard simulation tool currently fo-
cused on underwater networks. The most widely adopted approach
is to reuse terrestrial wireless network simulators, after changing
the wireless propagation model to approximate underwater acous-
tic propagation. This usually boils down to setting the speed of
sound to a constant value of 1.5km/s, and to implementing em-
pirical attenuation and noise power spectral density formulas, such
as those in [5, 6]. This approach is, however, limited, as the cited
empirical formulas usually hold as approximations, whose accu-
racy highly depends on the scenario and on the characteristics of
the deployment (i.e., shallow vs. deep water, warm vs. cold seas,
flat vs. rough sea bottom, and so forth); moreover, the variation
of environmental factors such as the temperature of water and the
morphology of the sea bottom may have a non-negligible impact on
propagation. For example, consider Figs. 1 and 2, which have been
obtained with the channel modeling component of the simulator de-
scribed in Sec. 3. Fig. 1, represents the attenuation incurred by an
acoustic wave transmitted, in August, from the shore of the Pianosa
island, located at 42.585°N, 10.1°E. Darker shades of gray repre-
sent stronger signal power. The figure shows that the signal reaches
the sea bottom bearing high power, and could be thus employed to
communicate directly with bottom-mounted sensors deployed off
the coast. By way of contrast, Fig. 2 shows the same scenario in
February: this time, the average temperature of the water is lower
in the upper water layers, changing the way sound is refracted, and
causing most of the acoustic power to stay away from the bottom
and closer to the surface. In this situation, any bottom mounted sen-

!Smaller nodes are simpler to handle and manage than larger ones.
Small transducers yield more isotropic acoustic emissions and al-
low to communicate over wider high-frequency bands (which pro-
vide high rates at limited distance). In addition, waterproof encas-
ing for small nodes is easier to obtain from very cheap materials.

Attenuation

130

125

120

115

110

1056

Depth [m]

100

10 15
Range [km]

Figure 1: Attenuation incurred by acoustic waves transmitted
in August from the shore of Pianosa Island, 42.585°N, 10.1°E. A
darker shade of grey represents a stronger signal. Bottom sed-
iments are a mixture of clay and silt; a sharply then smoothly
decreasing sea bottom profile can be seen in the lower half of
the picture.

sors deployed off the coast may be outside the reach of the trans-
mitter ashore.

The behavior outlined above highlights that an accurate repro-
duction of the physical layer, including all main propagation ef-
fects, is of paramount importance for any simulation. In this pa-
per, we present two contributions. The first is the development of
a network simulation tool which explicitly incorporates the prop-
agation details according to the above discussion: this has been
possible by integrating the well-known ns2 [7] and MIRACLE [8,
9] simulators with the Bellhop ray tracing tool [10], as discussed
in Secs. 2 and 3. While ray-tracing provides accurate emulation of
sound propagation, flexible programming at all levels of the proto-
col stack is made possible by the MIRACLE framework.

The second contribution is a comparative study of MAC solu-
tions for an underwater network, carried out among three differ-
ent MAC protocols, namely ALOHA [11], Tone-Lohi [1] and DA-
CAP [2]; as these protocols enforce different levels of transmitter-
side coordination in the network, our work also provides a discus-
sion of the relationship between the amount of coordination and
the final network performance. We present this evaluation in the
presence of both periodic and event-driven traffic.

2. PROPAGATION MODELING

From the point of view of network simulation, modeling the
propagation of acoustic waves means modeling the statistics of the
attenuation incurred by the waves over a link, as well as second-
order statistics such as the autocorrelation of link attenuation and
the cross-correlation between different links. As there is still no
widely agreed upon model for second-order statistics, propagation
modeling is usually limited to reproducing the average value of
link attenuation. An empirical model for this value is obtained
by considering the absorption factor a(f) as expressed by Thorp’s
formula [5, Chapter V] and the approximated formula A(d, f) =
d*a(f)?, where d is the distance covered by the link, f is the trans-
mit frequency, and k£ models the geometry of propagation (i.e.,
cylindrical for k = 1 to spherical for k = 2). Empirical for-
mulas are also available for the power spectral density of receiver
noise, which is expressed as the superposition of different nature-
and human-originated factors [5, Chapter VII].

Attenuation
en—

Depth [m]

180% I I I
0 10 15 20 25 50
Range [km]

Figure 2: Attenuation incurred by acoustic waves transmit-
ted in February from the shore of Pianosa Island, 42.585°N,
10.1°E. A darker shade of grey represents a stronger signal.
The environment is the same as in Fig. 1.

Attenuation

0

20

Depth [m]

140~
160~

180 I ' I a
0

Figure 3: Attenuation incurred by acoustic waves as predicted
by empirical formulas in [5]. A darker shade of grey represents
a stronger signal. Attenuation has not been calculated below
the sea bottom (lower white part of the figure).

The greatest advantage of this approach is that the cited equa-
tions are straightforward to implement and evaluate; its main draw-
back is that all formulas only hold as an approximation. The actual
propagation of acoustic waves largely depends on the physical pa-
rameters of water, namely temperature, salinity and local pressure
(which in turn depends on depth). These factors influence the lo-
cal propagation speed, and the way acoustic waves are bent (i.e.,
refracted) during propagation. A synthetic representation of the
factors causing acoustic refraction is provided by the sound speed
profile (SSP), i.e., the propagation speed of sound considered as a
function of water depth. Different profiles lead to potentially very
different propagation, and give rise to such effects as surface sound
channels, deep sound channels, convergence zones, shadow zones,
and so on (e.g., see [12, pp. 17-33]). Furthermore, the bathymetric
profile in the transmission area, the physical transmitter parameters
of the electro-acoustic transducer (shape, size, aperture) as well as
the type of bottom sediments, also influence propagation. No em-
pirical formula would be able to take all of this into account: be-
sides predicting a larger SNR on average, empirical formulas can-
not model such complex phenomena as those listed above; by con-
sidering again Figs. 1 and 2, we note that there is a difference of
nearly 20 dB between the attenuation incurred near the bottom at

20 km from the source in August and February. This is enough to
break a communication link, yet empirical formulas would not be
able to predict it. To make the difference between empirical for-
mulas and ray tracing clearer, Fig. 3 shows the attenuation value
computed through equations in [5]. Given the shallow water depth,
there is almost no difference between the attenuation incurred at
the surface and at the bottom; also, note that Bellhop partially mod-
els sound propagation in bottom sediments [10], unlike empirical
propagation formulas which are valid for water only. Any network
simulation would incur significant differences if run over the em-
pirical instead of the ray tracing model, as we show in Sec. 4.2.

In order to keep into account the previously described factors
and corresponding effects, we have considered the use of ray trac-
ing for propagation modeling. A freely available ray tracing tool,
Bellhop [10], has been integrated in the simulator for this purpose.
The tool takes all parameters cited before as inputs, and uses ray
tracing to compute the solution to the propagation equations over a
vertical slice of the water column, or over a restricted area within
this slice. In the second case, the computation is faster (intuitively,
fewer rays converge on a limited area). The solution provided by
Bellhop yields either the overall incident acoustic power, or the
attenuation incurred by the propagating wave. A second output
option offered by Bellhop allows to compute attenuation and time
of arrival on a per ray basis, thereby providing a quick means of
estimating the power-delay profile of the channel. This second op-
tion has not been considered for the moment, and is left as a future
work. In other words, we assume for now that the overall received
power is the coherent sum of all signals reaching the target through
multipath propagation. It should be noted that the greater accuracy’
provided by the Bellhop ray tracer is limited to the computation of
attenuation, i.e., noise is still modeled using the empirical formu-
las; however, this is a fairly common approach and is deemed to be
enough for our requirements. The next section details the features
of the simulator employed for our evaluation.

3. THE WORLD OCEAN SIMULATION
SYSTEM (WOSS)

The simulation system we specifically set up for this evaluation
is based on ns2 [7] and the ns2-MIRACLE extensions [8, 9]. In
particular, the latter provides a very flexible interface for protocol
coding and for implementing interactions among protocols located
at different layers of the ISO/OSI stack, if required. As in [13],
acoustic propagation effects have been reproduced by means of the
Bellhop ray tracing software [10], as introduced in the previous sec-
tion. This replaces and improves the previous implementation of
attenuation models, which were in accordance to the empirical for-
mulas given in [5, 6], see [14]. We recall that, in order to calculate
the solution to the propagation equations between a transmitter and
a receiver, Bellhop requires knowledge of the SSP, the bathymetric
profile, and the type of bottom sediments (required to model acous-
tic power losses due to bottom reflections). To provide this data,
we have interfaced our simulation framework with databases freely
available on the Internet. For the SSP, we employ the World Ocean
Database [15], a collection of SSPs measured during a number of
experiments all around the world; the measurements are divided by
location and day or season of the year when the measurement was
performed (recall that sound propagation is affected by water tem-
perature, which in turn undergoes seasonal changes, especially in

Ray tracing is not advisable for modeling very low-frequency
wave propagation; however, we note that within the common oper-
ating bands used by available hardware, the approximations inher-
ent 1n the ray tracing technique are verified to a satisfactory degree
of accuracy.

the superficial layer). As a complement to that, we also have spa-
tially finer data available from the GLINT’08 [16] sea trials (which,
however, have not been used for the results shown in this paper).
The bathymetric data have been taken from the General Bathymet-
ric Chart of the Oceans [17], a public database offering samples
of the depth of the sea bottom with an angular spacing of 30 sec-
onds of arc. Finally, the type of bottom sediments is taken from
the National Geophysical Data Center’s Deck41 database [18]. To
make database interfacing easier, WOSS abstracts from the specific
database technology (SQLIite, netcdf, user custom) through a sim-
ple Application Program Interface; thanks to this choice, the user
only has to write an object implementing the interface, in order to
have WOSS make the proper calls to the databases.

The effort of putting together all components required to run
Bellhop pays off, in that the user only has to specify at which loca-
tion in the world the simulated experiments should take place. This
is done by setting the wanted latitude and longitude, as well as the
size of the network area. The simulator automatically handles the
rest. In more detail, assume that some nodes were deployed within
the area: the simulator picks their location (i.e., latitude, longitude
and depth) and queries the databases for samples of bottom sed-
iments and measured SSPs at each node location (for simplicity,
the SSP can also be assumed to be constant, on average, through-
out the network area); by linearly interpolating bathymetric data,
an approximation of the sea bottom is also provided between each
pair of nodes. As a final preparatory step, a Bellhop run with the
previous parameters is executed in order to compute the acoustic
attenuation between any two nodes. Assuming that the network is
static and the average channel features do not change, the compu-
tations need be carried out only once.

All Bellhop calculations are performed at a fixed frequency,
which is assumed to be representative of the whole transmission
band. Specifically, let f; and f, be the lower and upper limits of the
frequency band: in line with the suggestions in [19] we run Bellhop
at the frequency +/ f¢ f... Noise power, accounted for through em-
pirical formulas, is also computed at this frequency: in other words,
we model noise as a white process within the signal band.

Having provided a specification of the physical layer, the MIRA-
CLE package handles the remaining part of the simulation, namely
the computation of Signal-to-Interference-plus-Noise Ratio (SINR)
for all transmissions, the related error rates, and the evolution of the
behavior of the nodes based on the simulated MAC and higher-level
protocols. The MIRACLE structure has been thought to make the
development of protocols and their interconnection easier within
the popular event-driven network simulator ns2. It is not within
the scope of this paper to describe ns2 or to give many details
about MIRACLE (which can be found in [8]). To make the pa-
per more self-contained, however, we wish to recall here that MIR-
ACLE is based on the concepts of Module, Connector, and
NodeCore. A Module is a piece of code which can contain
any protocol (MAC, routing, application...) or new physical layer
(PHY) specification. Modules are designed in order to be self-
contained, easy to interconnect, exchangeable, and reusable. The
interconnection of different modules in the same networking stack
(e.g.,aPHY to aMAC) is the task of specific objects, the Connec—
tors. Connectors mark two modules such that information flow is
enabled between them; such operations as parameter passing and
protocol interactions are thus easier: in particular, connectors are
useful in cross-layer protocol design and evaluation. The third main
component of MIRACLE, NodeCore, actually enables communi-
cations among connected modules, manages general-purpose in-
formation, and provides other functionalities to all modules. As a
further task, NodeCore also maintains the geographical informa-

tion of a node. The structure of MIRACLE and its modular design
allow any protocol to exchange information with any other proto-
col it is connected to, without having to resort to ad hoc solutions.
The type of information to be passed between modules includes
packets, which can be serially processed by different modules as
they step through the networking stack. To make any type of in-
formation about a packet available to, e.g., statistics extraction or
debugging routines, Connectors also act as tracers: this makes
the implementation of packet tracing automatic and independent of
the implementation of the Modules. The user only has to choose
the type of output to be provided by the tracers, and the related
level of verbosity. In case other mobility is required, ns2 provides
both an implementation of standard mobility models (such as the
random waypoint model) and an interface to employ external mo-
bility traces. MIRACLE extends this through a generic interface to
deploy mobility model routines in C++, currently featuring deter-
ministic and Gauss-Markov mobility models.

For the following discussion, it is useful to summarize the way
SINR is computed in MIRACLE. Assume that a packet of length
L Bytes is transmitted in a time 7, with power P,; say that this
packet incurs attenuation a., as it travels toward the receiver (at-
tenuation values are provided by interfaces to the physical layer
code, e.g., Bellhop). During the time 7', the packet is received, in-
terfering transmissions may disturb the reception. Assuming that
the interference power due to a single transmission ¢ = 1,2,...is
constant over its duration 77, the power of this transmission can be
modeled as I;(t) = P;a;1(t:, t; +7T;), where ¢, is the transmission
epoch of packet ¢, and 1(¢;,t;+7;) isequalto 1if ¢; < ¢ < ¢;+7T5,
and 0 elsewhere. At this point, MIRACLE computes the SINR by
considering the average interference over the duration 7, of the
wanted transmission:

P,a,
N+ & [0S Li(rydr

where NN is the noise power in the band of the signal. More de-
tails on the MIRACLE PHY-level models and assumptions can be
found in [8]. After the calculation of SINR(u), the probability of
error of the transmission is easily derived through standard formu-
las [20]. As an example, for Binary Phase Shift Keying (BPSK)
the probability of error is Serfc\/SINR(u), where erfc(-) is the
Gaussian complementary error function, and for incoherent Binary
Frequency Shift Keying (BFSK) it is % exp(—%S]NR(u)). In all
error equations, the SNR is scaled by a factor £ = 4dB in order
to model receiver inefficiencies (e.g., due to transducers and am-
plifiers). For example, this choice scales the probability of error of
BPSK from 3 - 107° to 2 - 10~° for an SINR of 10dB. Model-
ing Frequency-Hopping (FH)-BFSK requires to explicitly account
for the hopping pattern employed by each node, and for the cor-
responding interference caused to the transmission of a bit in each
sub-band. After this, FH-BFSK can be treated as the superposi-
tion of as many BFSK systems as the number of frequency bins
in the hopping pattern. By calling p the bit error rate computed by
MIRACLE, the packet error rate is finally obtained by assuming in-
dependent bit errors, i.e., through the formula 1 — (1 — p)®%, where
L is the packet length in Bytes.

4. CASE STUDY

For the following evaluation, we assume that 10 nodes are ar-
ranged in a 5 X 2 grid, with nearest neighbors 1 km apart, close to
the Pianosa island, a protected site off the north-western coast of
Ttaly. The geographical coordinates are 49.25°N 10.125°E, which,
along with the choice of a summer SSP, specify the set of environ-
mental parameters considered in the following evaluation.

SINR(u) = (D

We assume that the nodes are equipped with standard modem
hardware, such as the Teledyne-Benthos modem [21] or the WHOI
micromodem [22], which enable transmissions using either Fre-
quency Hopping Binary Frequency Shift Keying (FH-BFSK) or co-
herent Binary Phase Shift Keying (BPSK) in different bands. While
we mainly refer to uncoded BPSK in our results, we are also inter-
ested in the interference-resilience of FH-BFSK; this is obtained
by having different nodes employ different frequency hopping pat-
terns, thereby reducing the probability that two transmissions col-
lide, and are therefore lost. For these reasons, the FH-BFSK modu-
lation has also been chosen for the JANUS protocol, a standard for
unsolicited beacon-like communications [23, 24] currently under
development. Its main drawback, however, is the very low transmit
bit rate, on the order of only tens of bits per second, which limits
both its applications and the higher-level protocols that can oper-
ate on top of it [23]. In our implementation of FH-BFSK within
WOSS, we assume that the raw bit rate is 160 bps and that a con-
volutional code of rate 1/2 is used to encode data, reducing the
effective bit rate available to data to 80 bps. The whole signal is
carried in the 9-14 kHz band. These parameters are in line with
those used in [23]. We compare this to an uncoded BPSK modula-
tion (also supported by most standard modem hardware). Thanks
to coherent detection, BPSK is potentially much faster than FH-
BFSK: we account for this by setting the bit rate to 4800 bps and a
higher carrier frequency of 24 kHz.

We assume that all data generated by the nodes must be reported
back to a sink, located at the center of the network area. In order
to comply with the low FH-BFSK transmit rate, we set the packet
size L to 50 Bytes; however this might prove too inefficient for
BPSK, for which we instead set a packet size of 600 Bytes. In any
event, signaling packets (i.e., RTSs, CTSs, Warnings and ACKs)
are assumed to be 4 Bytes long. We consider two different packet
generation patterns: namely, either according to a Poisson process
of parameter A\ packets per second per node or in an event-driven
fashion, which will be presented later in Sec. 4.3.

We chose three MAC protocols (ALOHA [11], T-Lohi [1] and
DACAP [2]), which are representative of a different amount of co-
ordination among nodes (specifically, none, light, and strong sig-
naling). A larger amount of coordination generally requires greater
signaling, thus greater overhead: we specifically address whether
this also yields greater benefits. Note that the protocols above do
not require any time synchronization among nodes. For each proto-
col, we considered both an ACK and a no ACK version: in the for-
mer case, unless differently specified, we set the maximum number
of retransmissions of any packet to 5. Preliminary results on these
protocols have been presented in [25], while a related study on the
effects of seasonal parameters as well as of the number of nodes is
provided in [26].

4.1 Simulated protocols

ALOHA [11] is the first random contention-based channel ac-
cess protocol, and lets any node immediately send data as soon as
this data is generated. In multiuser networks, this implies that col-
lisions may take place if two users attempt to access the channel at
the same time. Standard contention resolution techniques are to be
applied in this case, e.g., instantaneous channel sensing, for which
we opted in the implementation presented here; in other words, the
terminals sense the channel before transmissions and stay silent so
long as they perceive any energy; after that, they immediately trans-
mit. In addition, we employ a standard MAC-level backoff policy:
after a transmission error, the sender waits for a random amount
of time between 0 and twice the maximum propagation delay be-
fore rescheduling a new attempt; the value of the maximum backoff

time is doubled up to 5 times upon consecutive errors, and reset to
the minimum upon a success.

ALOHA, in general, is expected to offer poor throughput per-
formance and to be very prone to congestion. Nevertheless, it can
be a feasible option in many underwater networks [3], if the traf-
fic patterns are light enough and the long propagation delays alter
the probability that collisions take place (unlike in radio networks,
where two simultaneous transmissions in the same area always col-
lide). We recall that Slotted ALOHA offers better performance
with respect to simple ALOHA: however, we do not consider this
version in this paper, as we do not assume any synchronization
among nodes.

Tone-Lohi (T-Lohi) [1] is a reservation-based MAC protocol. It
works by having nodes detect and count the number of neighbors
simultaneously contending for channel access during a preliminary
reservation phase; a light contention for channel access is then ad-
ministered among these nodes based on a traffic-adaptive backoff
algorithm, where the backoft length depends on the number of con-
tending nodes in the same neighborhood. Many protocol opera-
tions, including the detection of contenders, are driven by wakeup
tones. These tones allow nodes to stay asleep for most of the time,
providing substantial energy savings during the reservation phase.
On the other hand, the use of tones requires a specific detector,
which permanently operates in a low power listening mode.

The reservation procedure should make collision-free channel
access more likely, and works as follows. Any nodes seeking chan-
nel access must first send a reservation tone, and then wait to detect
possible contenders. If the node does not hear any other tone, it
wins the contention and immediately transmits its data. Otherwise,
if other tones are heard, the node starts a contention with the corre-
sponding transmitters, whereby nodes back off before sending an-
other tone, and the first to send a tone and not hear any other tone
for a silence time of fixed length wins and transmits data. In the
aggressive version of T-Lohi (aT-Lohi), the silence time is equal to
the maximum propagation delay; in the conservative version (cT-
Lohi) it is twice as long (for more details, please refer to [1]). In
the following, we will consider only aT-Lohi, augmented with the
same MAC-level backoff policy described for ALOHA. A compar-
ison including cT-Lohi is available in [26].

The Distance-Aware Collision Avoidance Protocol (DACAP)
[2] is a non-synchronized data access scheme following the well
known Request-To-Send (RTS) / Clear-To-Send (CTS) handshake.
Depending on the presence of simultaneous handshakes nearby and
on the relative distances of the nodes, two relevant scenarios may
arise: ¢) the receiver, after sending the CTS, overhears an RTS,
meaning that a future data packet transmitted by a neighbor will
threaten the pending reception; in this case the receiver sends a
short warning packet to its transmitter; ¢¢) if any node overhears a
packet meant for another neighbor, or receives a warning from a
receiving party, it defers the data transmission [2]. The length of
the idle period is chosen so as to make strong interference unlikely.

The handshaking pattern described above (which is indeed heav-
ier than the method employed in T-Lohi) is not resolutive, as in
some cases the warning packets arrive too late, or the nodes be-
come aware of potential collisions too late to defer data transmis-
sions; however, the degree of protection allowed by the handshake
and the adaptive message timing is fairly high. We observe that a
minimum handshake length must be set for all the nodes. In a net-
work where most links are as long as the transmission range, this
minimum length must be as high as twice the maximum propaga-
tion delay; in a deployment such as ours, where all links are shorter,
it can be reduced. Again, we consider two versions of the protocol,
namely with and without ACKs. In the first case, the protocol re-

quires slightly different timings with respect to the second case, in
order to accommodate the ACK message [2]. We apply to DACAP
the same MAC-level backoff described for ALOHA and T-Lobhi.

4.2 Results for Poisson traffic

This first part of our performance evaluation aims at determining
which channel access protocol works best under random genera-
tion of traffic according to a Poisson process. We recall that the
three protocols are representative of different types of handshakes,
namely no handshaking (ALOHA), light handshaking (T-Lohi) and
heavy handshaking (DACAP).

We start by comparing the performance of all protocols using a
BPSK modulation and L = 600 Bytes, and specifically address the
differences due to the use of empirical attenuation formulas, as op-
posed to the attenuation predicted by Bellhop. Figs. 4 through 7 de-
pict throughput, success ratio, overhead and application-level suc-
cess ratio for all protocols. For the moment, we consider only the
no-ACK version for simplicity.® As the sink is the only receiver in
the network, we define normalized throughput as the ratio of the
number of bits that correctly reach the sink per second, divided by
the modulation bit rate (i.e., 4800 bps in this case), as this is the
maximum rate at which information can reach the sink. Success
ratio is defined as the ratio of the number of correctly received data
packets to the total number of data packets sent. The overhead is
the fraction of sent bits that are dedicated to signaling packets, i.e.,
ACKs (for all protocols), RTSs, CTSs, and Warnings (DACAP), as
well as tones (T-Lohi). For ACK versions, this does not include re-
transmissions of erroneous packets. Finally, application-level suc-
cess ratio is required in order to understand the level of network
performance perceived by upper network layers. In fact, as the net-
work is saturated by incoming traffic, the transmission queue of the
nodes may become full, so that the nodes begin to lose generated
packets. The application success ratio is then computed over all
generated packets, instead of just the packets that are transmitted.
The figures show two sets of curves: solid ones are related to the re-
alistic PHY-level model (Bellhop), whereas dashed ones represent
the use of empirical attenuation formulas.

The first piece of information conveyed by these results is that
empirical formulas yield better protocol performance, mainly due
to a lower attenuation. This leads to a larger SNR, which devi-
ates from the values obtained with Bellhop by 5 to even 20 dB.
The resulting transmission performance is therefore better, which
is reflected by the MAC-level success ratio in Fig. 5. In turn,
more packets are delivered to the sink, leaving more time to or-
ganize handshakes and subsequent transmissions for newly gener-
ated datagrams. Both throughput (Fig. 4) and application-level suc-
cess ratio (Fig. 7) benefit from this situation; furthermore, the lower
number of transmissions required to correctly receive a packet yields
a lower overhead, as seen from Fig. 6. These observations apply
to ALOHA more apparently than to the other protocols: ALOHA’s
throughput keeps growing linearly with increasing trafficup to A =
200 bps per node when using empirical formulas, as opposed to
50 bps when employing Bellhop. We also note that ALOHA’s suc-
cess ratio keeps above 0.8 for all considered traffic values when
using empirical formulas, against a decrease to 0.45 when using
Bellhop. Furthermore, the use of empirical formulas would have
predicted a worse performance for aT-Lohi than ALOHA, whereas
this is rather not the case with the more realistic Bellhop-computed
attenuation (see discussion below).

From this first set of results, we also see that DACAP’s perfor-
mance is not substantially impacted by the difference between the
attenuation models: this can be expected, given that DACAP’s per-

3Similar results can be obtained for the ACK versions as well.

0.4

—e— ALOHA, no ACK, Bellhop
—-0O-- ALOHA, no ACK, Urick o
035 L =2 DACAP, no ACK, Bellhop .../
—-4-- DACAP, no ACK, Urick
—v— al-Lohi, no ACK, Bellhop .~
0.3 —-v--_aT-Lohi, no ACK, Urick
3 ’
=N .
g 025 o 5
= . g
8
g o015
s
4
0.1
0.05
0
0 50 100 150 200 250 300

Data Generation Rate Per Node, A [bps]

Figure 4: Throughput as a function of traffic for all protocols,
BPSK, L = 600 Bytes, using Bellhop and formulas in [5].

0.03
il A
) A A
0.025 fiw
- 0.02 / —©— ALOHA, no ACK, Bellhop
54 A‘ --O0-- ALOHA, no ACK, Urick
<= T —A— DACAP, no ACK, Bellhop
S 0.015 i -—-4&-- DACAP, no ACK, Urick = .4
3 { —v— aT-Lohi, no ACK, Bellhop
4 --v-- aT-Lohi, no ACK, Urick
0.01 /
A
0.005
0 R DA S — %
0 50 100 150 200 250 300

Data Generation Rate Per Node, A [bps]

Figure 6: Protocol overhead as a function of traffic for all pro-
tocols, BPSK, . = 600 Bytes, using Bellhop and formulas
in [5].

formance is limited by the handshake times (including the round-
trip times, packet transmission deferral and time allotted to Warn-
ings). In fact, DACAP’s throughput reaches a maximum of about
0.13 in both cases (though for different traffic values). Consistently,
the success ratio is stable at a value very close to 1 thanks to DA-
CAP’s heavy collision avoidance signaling, and this is true for both
empirical and Bellhop attenuation.

Similar observations hold for aT-Lohi as well, with the excep-
tion of success ratio, which is lower with empirical formulas un-
like DACAP’s and ALOHA’s. In fact, in the case of aT-Lohi, the
handshake for channel access has strict timing that increases the
chances of collisions and interference. With Bellhop, larger attenu-
ation prevents nodes at opposite sides of the network from hearing
each other’s tones, so that collisions are more likely (recall that
receivers do not clear transmissions in cT-Lohi). With empirical
formulas, lower attenuation relieves this until the offered traffic ex-
ceeds A = 120 bps per node, after which transmissions are more
frequent: lower attenuation yields now the drawback of a larger in-
terference, thus a lower SINR. It is worth noting at this point that
the success ratio curves for most protocols, and in particular for
DACAP with Bellhop, tend to increase after a first decrease phase.
The reason is MAC-level backoft, which forces nodes to longer pe-
riods of silence, decreasing the level of interference and the chance
of collision. DACAP especially benefits from this effect, which

‘ ey

S

B \
LOHA, no ACK, Bellhop

A
-- ALOHA, no ACK, Urick

Success Ratio

- P » Urick SR
aT-Lohi, no ACK, Bellhop

-- 'd—[:-LOhl, no ACK, Urlclg

0 50 100 150 200 250 300

Data Generation Rate Per Node, A [bps]

W9tod
o
A
=
2
>
2
z
g

Figure 5: Success ratio as a function of traffic for all protocols,
BPSK, L = 600 Bytes, using Bellhop and formulas in [5].

Application Success Ratio

ALOHA, no ACK, Bellhop
-- ALOHA, no ACK, Urick

— DACAP; no ACK; Urick
aT-Lohi, no ACK, Bellhop

-- a"l}Lokn, no ACK, Urlclg

0 50 100 150 200 250 300

Data generation Rate Per Node, A [bps]

1ebod
o
>
Q
>
)
=
5
>
Q
~
jor]
o
=
o
S

0.1

Figure 7: Application-level success ratio as a function of traf-
fic for all protocols, BPSK, L = 600 Bytes, using Bellhop and
formulas in [5].

adds to the periods of silence required by handshakes: Bellhop,
with its larger attenuation and thus lower transmission SINR, tends
to amplify this effect, explaining the sharp increase in success ratio
(solid line with upward triangles in Fig. 5). However, the increase
in success ratio is not primarily due to the fact that more packets
get through (the throughput increase is actually very limited), but
rather to the fact that fewer packets are transmitted. This can also
be seen from the application success ratio (Fig. 7) which keeps de-
creasing with increasing traffic, since saturated nodes will discard
any new packets.

While the previous results are focused on the comparison of dif-
ferent propagation models, they indeed allow to draw some first
conclusions about the relationship between network performance
and handshake overhead: namely, low overhead protocols tend to
achieve a larger throughput, at the expense of a lower success ra-
tio. Robust handshake-based protocols such as DACAP can instead
leverage on their better organization of transmissions in order to
achieve a very high success ratio at the price of lower throughput.

We now focus on a joint comparison of the throughput of all
protocols (both ACK and no ACK versions) using only Bellhop. In
Fig. 8 we consider the BPSK modulation used for the previous set
of results, whereas in Fig. 9 we employ the lower rate FH-BFSK-
based PHY level described in Sec. 4. Adding ACK versions in
Fig. 8 confirms the claim that one further piece of overhead does

0.35

—e— ALOHA, ACK

6 ALOHA. no ACK

—a— DACAP,

0.3 & DACAP, no ACK

—v— aT-Lohi, Af 5

--w-- aT-Lohi, no ACK
5 025 o
Ey e
g 02 L
= o
3 @,@’
S 015 o
5
g o2
Z ? Doy, NV DUIVS B O I)\
Z 0.1 e

rvvy e .
0.05 + \
N —— ¢
0d
0 50 100 150 200 250 300

Data Generation Rate Per Node, A [bps]

Figure 8: Throughput as a function of traffic for all protocols,
BPSK, L = 600 Bytes.

not necessarily yield better throughput, but rather decreases it in
this case: the reason is the even longer waiting time between trans-
missions; moreover, ACKs may collide with data packets or other
ACKs, and if the ACK is lost the transmitter resends the packet,
thus decreasing the efficiency of the scheme. We remark that this
is not a claim against ACKs: they do increase the success ratio
(not shown here due to lack of space) for most protocol configura-
tions, but in this case the throughput benefit is not as attractive. The
normalized throughput of the protocols with FH-BFSK is slightly
higher with respect to BPSK, which reflects the better resilience
to collisions of the non-coherent modulation scheme. We observe
improvements for all protocols, especially DACAP and the ACK-
based protocols in general. Thanks to FH-BFSK, there is a lower
chance that signaling packets collide among themselves or with
data, thereby limiting losses due to interference. In other words,
throughput is low mainly because of idle waiting periods. The
drawback of FH-BFSK is highlighted, however, by the values of
traffic at which that throughput is obtained, which are one order of
magnitude lower than with BPSK, due to the significantly smaller
data rate available.

4.3 Results for event-driven traffic

This subsection aims at comparing ALOHA, DACAP and T-Lohi
under event-driven traffic. To simulate events, we assume that a
moving object traverses the network, triggering packet generation
by nodes that detect the object nearby. Such packets are gener-
ated at the rate of 1 packet every 10 seconds whenever the object is
within the detection range of a node, whereas no packets are gen-
erated when the object is out of this range. For simplicity, we as-
sumed that the event detection range of a node is fixed and equal to
1.5 km, which adequately covers the area using the same 10-node
topology considered before. Note that this is different from the
communication range, which is instead unvaried and large enough
to have all nodes be within reach of the sink. Due to lack of space,
we will focus only on the use of FH-BFSK modulation, with packet
size L = 50 Bytes.

Unlike in the previous evaluation, throughput is not of primary
importance here: hence, we focus on the time of arrival of the first
(correct) packet triggered by the event detection, regardless of the
corresponding ACK (a measure of the readiness of a protocol), and
the time of arrival of the last packet (a measure of the ability of
a protocol to handle bursty traffic effectively). Both ACK and no
ACK versions of the protocols are considered; ACK versions are
fully reliable (i.e., packets are retransmitted until correct detec-

3
035 Mg ALOHA ACK
—-&- ALOHA. no ACK
—a— DACAP, ACK
0.3 - & DACAP. no ACK
—v— aT-Lohi, Af B
--%-- aT-Lohi, no ACK e
5025 ?
= ye)
e
2 0.2 g
g ,o°
g -
5
£ ~ LIS
5 % WSO e = = ST
Z 0.1 k*—"\
0.05
0 i
1 2 3 4 5 6 b

Data Generation Rate Per Node, A [bps]

Figure 9: Throughput as a function of traffic for all protocols,
FH-BFSK, L = 50 Bytes.

Protocol First Last Error rate

|| arrival [s] | arrival [s] | |
ALOHA (no ACK) [1.15 29.4 0.44
DACAP (no ACK) 2.07 168 0.091
aT-Lohi (no ACK) 1.48 121 0.003
ALOHA (ACK) 1.15 113.1 —
DACAP (ACK) 2.07 251 —
aT-Lohi (ACK) 1.48 133 —

Table 1: Protocol performance in the event-driven traffic sce-
nario using FH-BFSK, L = 50 Bytes.

tion is confirmed). For the no ACK versions, we also measure the
packet error rate. These results are reported in Table 1.

We observe first that ALOHA does not require any preliminary
signaling, therefore its first arrival time is the lowest, both with
and without ACKs. Let us focus on the last arrival time now: if
ACKs are used, ALOHA requires 113 s to complete all transmis-
sions, whereas the other handshake-based protocols require longer
times. These first observations are expected, but we observe that
our analysis provides a quantitative evaluation of the timings and
error rates. A second observation is that, while no ACK ALOHA
bears an unacceptable error rate, the no ACK versions of the other
protocols benefit from handshakes to achieve a lower error rate at
the price of a higher completion time (last arrival). In particular,
aT-Lohi’s errors are on the order of 0.3%, which corresponds to a
completion time of 121 s, close to that of ACK ALOHA. DACAP
yields instead a 9% error rate, and takes longer to complete. This
is in line with throughput results (see Fig. 9), and can be explained
with the larger chance of collision among packets (both signaling
and data) caused by bursty traffic.

We highlight that the best choice for bursty traffic (ALOHA with
ACKs) is not the best one under Poisson traffic (see Fig. 4). There-
fore, if we had to implement one protocol to handle both scenarios,
both DACAP and T-Lohi may represent acceptable choices, espe-
cially if the application running on top of the protocols can with-
stand error rates on the order of 10%. Alternatively, we may mod-
ify ALOHA such that packets requiring ACKs (e.g., those gener-
ated by specific events) are flagged, making it possible for the good
throughput of no ACK ALOHA to coexist with the good perfor-
mance of ALOHA with ACKs under event-driven traffic. We also
note that other environmental effects should be considered here:
e.g., multipath may generate multiple tone arrivals, distorting the
way T-Lohi counts contenders. Both lines of research are left for
future work.

| Protocol || Poisson traffic

Event-driven traffic

ALOHA (no ACK)

Good: best throughput, though Tow success ratio

Bad: shortest timing, but worst error rate

DACAP (no ACK) || Average: limited throughput, high success ratio

Average: acceptable error rate and completion time

aT-Lohi (no ACK)

Average: fair throughput, high success ratio, low overhead

Good: very low error rate, takes slightly longer than ALOHA

ALOHA (ACK) Bad: fair throughput but lowest success ratio

Good: shortest completion time with full reliability

metrics)

DACAP (ACK) Average: low throughput but good success ratio Bad: longest completion time
aT-Lohi (ACK) Bad: lowest throughput not balanced by success ratio Average: Completion time not as good as ALOHA’s
Best protocol(s) ALOHA-no ACK (for throughput), others (for different | ALOHA-ACK (best timing), T-Lohi-no ACK (very close

timings at 0.3% error rate)

Table 2: Summary evaluation of protocol performance under Poisson and event driven traffic.

5. CONCLUSIONS

In this paper, we have described a simulator for underwater net-
works which incorporates a ray tracing tool for a more realistic re-
production of underwater propagation. The simulator is integrated
with free world databases for environmental parameters, allowing
the user to easily specify the operational area of the network as
well as the desired time of the year to be simulated, as both affect
the outcome of the simulation. As a case study, we have then em-
ployed the simulator to compare ALOHA, aT-Lohi and DACAP,
three protocols for underwater networks bearing different levels of
coordination among nodes. We have considered both periodic and
event-driven traffic, showing that the best protocol in one case is
not necessarily the best in the other case. The summary of our con-
clusions is reported in Table 2.

Acknowledgment

This work has been supported in part by the NATO Undersea Re-
search Center under contracts no. 40800700 (ref. NURC-010-08)
and 40900654.

The authors would like to thank those people at NURC who have
contributed to the genesis and improvement of the ideas behind this
work: Kim McCoy and Giovanni Zappa, for inviting the authors
at the workshops where the JANUS protocol was being defined
(see [24]), for the many ensuing discussions and useful tips, as well
as for the chance to work with the JANUS group as NURC visiting
researchers; Alessandro Berni, Diego Merani and Robert Been, for
being first points of contact within NURC.

6. REFERENCES

[1] A. Syed et al., “Comparison and Evaluation of the T-Lohi
MAC for Underwater Acoustic Sensor Networks,” IEEE J.
Select. Areas Commun., vol. 26, pp. 1731-1743, Dec. 2008.

[2] B. Peleato and M. Stojanovic, “Distance aware collision
avoidance protocol for ad hoc underwater acoustic sensor
networks,” IEEE Commun. Lett., vol. 11, no. 12, pp.
1025-1027, Dec. 2007.

[3] M. Zorzi, P. Casari, N. Baldo, and A. F. Harris III,
“Energy-efficient routing schemes for underwater acoustic
networks,” IEEE J. Select. Areas Commun., vol. 26, no. 9,
pp- 1754-1766, Dec. 2008.

[4] C. Schurgers et al., “Underwater networking projects.”
[Online]. Available: http://circuit.ucsd.edu/~curts/wisl

[5] R. Urick, Principles of Underwater Sound. New York:
McGraw-Hill, 1983.

[6] M. Stojanovic, “On the relationship between capacity and
distance in an underwater acoustic communication channel,”
ACM Mobile Comput. and Commun. Review, vol. 11, no. 4,
pp. 3443, Oct. 2007.

[7] ns2 Network Simulator, http://www.isi.edu/nsnam/ns/.

(8]

(9]
(10]

(1]

[12]

(13]

[14]
[15]

(16]

[17]

(18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

N. Baldo et al., “NS2-MIRACLE: a modular framework for
multi-technology and cross-layer support in network
simulator 2,” in Proc. of NSTools, Nantes, France, 2007.
“Ns2-miracle source code download page.” [Online].
Available: http://telecom.dei.unipd.it/pages/read/58/

M. Porter et al., “Bellhop code.” [Online]. Available:
http://oalib.hlsresearch.com/Rays/index.html

L. G. Roberts, “ALOHA packet system with and without
slots and capture,” ACM SigComm Computer
Communication Review, vol. 5, no. 2, pp. 28-42, 1975.

E. B. Jensen et al., Computational Ocean Acoustics, 2nd ed.
New York: Springer-Verlag, 1984, 2nd printing 2000.

N. Parrish, L. Tracy, S. Roy, P. Arabshahi, and W. Fox,
“System design considerations for undersea networks: link
and multiple access protocols,” IEEE J. Select. Areas
Commun., vol. 26, no. 9, pp. 1720-1730, Dec. 2008.
“Model for underwater channel in ns2,” 2008. [Online].
Available: http://telecom.dei.unipd.it/download/

“World ocean atlas.” [Online]. Available:
www.nodc.noaa.gov/OC5/WOAO0S5/pr_woa05.html

H. Schmidt et al., “GOATS 2008: autonomous, adaptive
multistatic acoustic sensing,” Massachusetts Institute of
Technology, Tech. Rep., 2008. [Online]. Available:
www.onr.navy.mil/sci_tech/32/reports/docs/08/oaschmi3.pdf
“General bathymetric chart of the oceans.” [Online].
Available: www.gebco.net

“National geophysical data center, seafloor surficial sediment
descriptions.” [Online]. Available:
http://www.ngdc.noaa.gov/mgg/geology/deck41.html

P. C. Etter, Underwater acoustic modeling and simulation,
3rded. Spon Press, Taylor & Francis group, 2003.

J. G. Proakis, Digital Communications, 3rd ed.
McGraw-Hill, 1995.

“Teledyne benthos undersea systems and equipment,”
www.benthos.com.

L. Freitag et al., “The WHOI Micro-Modem: An Acoustic
Communications and Navigation System for Multiple
Platforms,” http://www.whoi.edu, 2005.

K. McCoy, “JANUS: from primitive signal to orthodox
networks,” in Proc. of [ACM UAM, Nafplion, Greece, Jun.
2009.

“JANUS workshop proceedings.” [Online]. Available:
http://nrcsp.zftp.com/users/janus-tmp

F. Guerra, P. Casari, and M. Zorzi, “MAC protocols for
monitoring and event detection in underwater networks
employing a FH-BFSK physical layer,” in Proc. of IACM
UAM, Nafplion, Greece, Jun. 2009.

——, “A performance comparison of MAC protocols for
underwater networks using a realistic channel simulator,” in
Proc. of MTS/IEEE Oceans, Biloxi, MS, Oct. 2009.

