Re-engineering Wireless Networking
Protocols: the Case of
Underwater Acoustic Communications

Michele Zorzi

Department of Information Engineering — University of Padova — Italy
and CallT2 — University of California at San Diego
zorzi@dei.unipd.it

R PN T

"’*_\E:" T« e
BN

Outline

¢ Objectives and motivation
e Characteristics of underwater acoustic propagation
¢ Implications for ad hoc network protocol design

¢ Specific protocol examples:
— Energy-efficient routing
— Topology control via wake-up mode

¢ Discussion on propagation and simulation modeling
e Conclusions and future directions
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Underwater Networks

e Many applications
— Environmental monitoring
— Unmanned vehicle coordination
— Equipment monitoring
e Various requirements
— Periodic data
— Real-time traffic
— Variable reliability
— Energy efficiency
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Example of Underwater Acoustic Sensor Network
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Underwater cammumcatlans

e Radio communications
— Radio waves tend to fade very rapidly in water
e Optical communications
— Optical signals have a limited reach
— Need to align the transmitting and receiving devices

e Acoustic communications

— Very slow propagation speed with respect to radio in air
(1.5 km/s typically)

— Limited bandwidth and data rate

— Noise and attenuation are frequency-dependent

— Strong fading phenomena, especially in horizontal channels
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Underwater acoustic propagation

¢ Path loss equation:

10log A(L, f) =k -10logl + ¢ - 10loga(f),

350

e Absorption (Thorp’s formula): o

10loga(f) =0.11 1+f2 +444100+f
+2.75 - 1074 % +0.003

bsorption coefficient [dB/km]

¢ Anisotropic propagation (e.g.,
more path loss in horizontal link
in shallow water than vertical link
in deep water) O ey e o e e
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Noise

e where:
10log N(f) = 17— 301log f

e Sum of four components:
N(f) = Ne(f) + No(f) + Nu(f) + Nen(f)

101og Ny (f) = 40 + 20(s — 0.5) + 26log f

—60 10g<f + 003) [ I

10log Ny (f) = 50 + 7.5w/? 4 201og f N
—40log(f + 0.4)

10log N (f) = =15+ 20log f, Various sources of noise:

noise p.s.d. [dB re micro Pa]

turbulence, shipping,
wind, thermal
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Propagation delay

e Speed of sound in water: about 1500 m/s

e This means that propagation delays can be
significant
e Example for a 1000-bit packet
— Link of length 1 km
v’ propagation delay: 0.66 s
v transmission time @ 25 kbps: 0.04 s
— Link of length 10 km
v/ propagation delay: 6.6 s
v transmission time @ 10 kbps: 0.1 s
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Underwater acoustics vs. radio
e Radio e Acoustics
— High bandwidth (MHz) — Low bandwidth (kHz)
— Short prop delays (us) — Long prop delays (seconds)
— Well understood propagation — Complicated propagation
— Isotropic propagation — Anisotropic propagation
— Distance-independent — Distance-dependent
bandwidth bandwidth
— Typically white noise — Frequency-dependent noise
— Energy costs — Energy costs
v TX ~ RX ~ idle >> sleep v TX > RX >> idle >> sleep
— Small and cheap nodes — Bulky and expensive nodes
— Lots of research done on all — Lots is known on PHY, little on
communications aspects networking
— Accepted channel models - No comprehensive channel m.
— Several simulation tools used — Lack of simulation tools
— Easy to experiment — Very hard to experiment
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Ad hoc networks

e Without infrastructure
¢ All nodes are peer

¢ Self-organizing

e Multihop

¢ Main issues for communication/networking
— Media access control
— Routing for multihop operation
— Topology control
— Mobility
e Complexity, consumption, cost
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MAC protocols

e Deterministic (FDMA, TDMA, etc.)

¢ Guaranteed access (polling, token)

e Random (ALOHA, CSMA)

e Hybrid (e.g., contention & reservation)

¢ Centralized needs coordination
e Random is quicker yet potentially error-prone

e Main performance metrics: throughput, delay, energy
consumption, fairness, stability, robustness
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MAC issues in UW networks

Long propagation delays

— Problems with CSMA protocols; long latencies with handshakes; long
guard times for TDMA schemes

Scheduling algorithms are very difficult to design

— Propagation times often exceed the packet transmission times

— Users may become aware of transmissions at very different times

— As a result, the time dimension must be explicitly taken into account
No collision detection possible

— Similar to wireless radio networks, collision avoidance is used instead
Very limited bandwidth

— FDMA and CDMA may lead to very small user data rates

Energy performance

— Energy efficiency is paramount in UW networks
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Routing protocols in ad hoc networks

¢ Main differences with traditional (“Internet”) routing:
— Mobile nodes
— Unstable links cause impairments and inconsistencies
— All nodes participate (not just “routers”)
e Main issues:
— Signaling overhead
— Limited bandwidth
— Interference
— Topology
— Mobility
e Some trade-offs:
— Proactive vs. reactive (overhead vs. latency)
— Hierarchical vs. flat (structure vs. flexibility)
— Centralized vs. distributed (complexity vs. performance)
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e Energy-aware routing
— Route selection explicitly incorporates energy metrics
— Various objectives: total energy, network lifetime, etc.
e Well studied topic in RF wireless
¢ New challenges in UW networks
— Propagation characteristics are different
v" Anisotropic characteristics: link orientation matters
— Bandwidth (and frequency) depend on link length: transmitting further
requires more power, but also more time
v' Relationship between link distance and energy consumption is non-trivial (also,
noise is not white)
— Short hops: more hops (delay), more modems on (energy), less power,
more bandwidth
— Longer hops: fewer hops, more power (energy & interference), longer
transmission times, more channel access delay

¢ New routing protocols can be designed following these guidelines

Energy consumption and routing protocols
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Example: Bounded distance protocol

¢ We developed a protocol based on these observations

¢ Bounded distance protocol: methodology

— Analysis

v’ Effect of increased total path length

v’ Effect of increased number of relay nodes
— Metrics

v’ Delay

v Energy consumption (transmit and receive)
— Develop simple routing strategy

v Based on analysis
— Simulation

v Matlab (simple multihop results)

v’ ns2 (actual protocol operation)
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¢ With perfect power control
¢ Delay increases, but slowly and not linearly (shorter hops, more bw)

e For each total Rath length, there is @ number of relays that minimizes
the overall path energy

15
Number of relays
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e The average density of relays that minimizes energy is
relatively insensitive to the path length

e The minimum energy itself is not very critical
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Bounded Distance Protocol/

e The previous results suggest that there is some kind of “universally
optimum hop length” for minimum energy (given the scenario)
e Idea: bounded distance routing protocol

— Attempt to transmit to farthest node within X meters, but towards the
destination (i.e., within some angle)
v Note: shorter hops are “less suboptimal” than longer ones
v" More refined selection rules can be adopted

— If no such node exists, pick the closest that is at least X meters away
— Choose X optimally based on previous analytical results

e Comparison

Greedy minimum energy (shortest transmit distances)

Shortest hop count (longest transmit distances)

Our protocol

Optimum path centrally computed
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Here we simulate the actual routing protocol as well as MAC
Energy is smaller in our scheme (optimal tradeoff)

There is no delay penalty
The minimum-energy point corresponds to better throughput
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Topology control issues

e Use of sleep modes to save energy (many schemes for RF nets)
¢ Acoustic modems can listen while in low-power mode

¢ In UW, the energy consumption relationships are different

— Radio: TX ~ RX ~ idle >> sleep

v Conclusion: sleep is the only meaningful way to save energy

— Acoustics: TX > RX >> idle >> sleep

v" Conclusion: idle listening may be better than sleep-cycles

Card Transmit | Receive | Idle | Sleep
Cisco Aironet [1] | 2240 1350 1350 | 75
Micro Modem [2] | 10,000 3,000 80 ~ 0

Table 1: Power consumption (mW) for interface modes
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Schemes compared

Optimal
— Genie-aided, maximal sleep, knows exactly when it should wake
up

Wake-up

— Always in low-power idle listening mode, nodes can be woken up
on demand

STEM

— Nodes sleep and periodically wake up, link can be established by
persistent signaling until the intended receiver is available

All results normalized to a continuously receiving node
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Topology control example

1.1
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Figure 3: Total energy consumption of the network vs. wakeup
mode cost.
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A word on models...

Unlike in radio, there are no well-established models for
acoustic propagation and channel behavior

— Very erratic and hard to model, lack of interest?
— Some disconnect between acousticians and comms engineers?

We would like to have something like the path-loss/shad/fading
or WSSUS statistical representation — is this even possible?

Simulation tools for networking studies
— Even for radio they are not that good (poor PHY support)

— Here PHY support is even more important (e.g., disk coverage
makes no sense at all)

Experimental data
— Aot of data out there (though not easily accessible)
— Little attention to networking metrics — not very useful as it is
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Towards networking-oriented channel modeling

e Goal: develop an accurate simulator for realistic evaluations of
UW acoustic networks

¢ Include protocols as well as reasonable PHY representation

o Statistical analysis of data to reveal behaviors and come up with
some stochastic models

— Issues related to correlations due to the need to simulate
simultaneous links

— Time correlations as well
e Use of traces for simulations (maybe)
¢ Develop some “typical” channels
e The type and quantity of data needed is being evaluated

— We are working with partners who have experimental capabilities
and are planning sea trials in the near future

European Wireless, Apr. 15, 2010 32 Michele Zorzi, zorzi@dei.unipd.it

16



experiment ime min]

D R e

woow w w
observation time [ms]

(a) Link T1-H4, May.

—Nay
80 : ——June
—c— September]

1505 1510 1515 1520 1525 1530 1535
sound speed [mis]

andard deviation of SSP during experiments o
>

experiment ime [min]

W@ W @ s e
observation time [ms]

(b) Link T1-H4, June.

Figure 3. Pseudocolor plot of measured channel impulse response amplitudes for

., Figure 6. Channel corrlatio
May. The links considered are

L

oif

CEEE
<[]

vefficient p as a function of time lapse 7 in
n each transmitter T1. T2, T3 to hydrophone

H4.

e

power percentag

1
IR E |

Figure 10. Normalized power delay profiles during May. The transmitier is|
TI. the receiver is H2.

o s 10 5 3
time [ms]

European Wireless, Apr. 15, 2010 33

Michele Zorzi, zorzi@dei.unipd.it

e The World Ocean Simulation System (WOSS) is a fully automated
framework for integrating channel and network simulation software

¢ Originally thought as a full-fledged interface between ns2 and
Bellhop, it can be interfaced with any channel simulator, to which it
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0SS —

World Ocean Simulation System

can provide all required environmental data

* WOSS provides a flexible, extendable, technology-independent API

for

v retrieving and manipulating bathymetry, Sound Speed Profiles (SSPs)
and bottom sediment data from standard or custom databases

v manipulating transmission loss or channel power-delay profile as output
by the channel simulator and feeding it to the network simulator

v  optionally storing and retrieving channel simulation outputs in a custom

database for later use
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Current and future capabilities

e The current version provides:

— Interface implementation and custom netcdf db of monthly
averaged SSPs taken from the World Ocean Atlas database
(2005)

— Interface implementation for the GEBCO netcdf bathymetry
database (both ‘03 and 09 versions).

— Interface implementation and custom netcdf data analysis
of the DECK 41 database, for bottom sediments composition
and parameters

— Fully detailed interface for the Bellhop ray tracing program

e Future versions will include interfaces to other channel
simulators

e Code available at http://telecom.dei.unipd.it/ns/woss/
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WOSS Example resultsl
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Using empirical formulas Using Bellhop
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Some more discussion...

¢ An accurate simulation tool is very important and useful,
but making the right choice in the accuracy/complexity
space is a challenge

¢ A detailed understanding of the propagation features of
the underwater acoustic environment is very important

e However, a detailed simulation of the propagation
behaviors may be computationally too heavy, and not
even necessary

o It is still not completely clear what are the important
effects and which are those that can be ignored

— How do network behaviors depend on propagation details?
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Conclusions

o Efficient support for mobile communications and
networking in UW is an important and challenging issue

e Main issues include: topology, resource allocation, multiple
access, routing, error control, etc.

¢ Known solutions for RF networks abound, but they do not
necessarily apply here (in fact, in many cases they don't)

e Features of the propagation environment and of the
devices are to be explicitly taken into account for a proper
design

e Importance of real implementation and testing of
competitive solutions, but also of effective channel models
and simulation tools
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