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Abstract—In this paper we study the wide sense stationarity of
the energy of the underwater acoustic channel impulse response
and we provide an estimate of the interval during which the
wide sense stationarity property holds. We analyze the SPACE08
data set, which has been collected near Martha’s Vineyard
Island during October 2008. In this data set the environmental
conditions such as the height of the waves and the wind direction
vary significantly in time. We consider the time series recorded
in four different fixed positions. This allows us to compare the
results between different locations and environmental conditions.

I. INTRODUCTION

The improvement of the performance of underwater acoustic

communications systems has been an active area of research

for a number of years. One avenue of work has focused on

optimizing system parameters (e.g., transmit power, symbol

rate, error correction coding rate) to maximize the channel

throughput given limited resources. In order to more efficiently

use the channel, a data adaptive estimator, able to predict

the quality1 of the channel, could be applied. However these

estimators are optimized for estimates of channel statistics,

hence they assume that the channel fluctuations (of its energy

in our case) can be represented as a wide sense stationary

(WSS) random process. It is therefore important to understand

the time interval over which the channel energy evolution can

be modeled as a WSS random process.

For these reasons, in this paper we test the wide sense

stationarity of the channel energy and we estimate the interval

over which the channel can be modeled as WSS. We choose

the total energy in the channel impulse response because it is

a metric of the quality of the received signal, especially for

non-coherent receivers, e.g., as used in M-ary Frequency Shift

Keying (MFSK) or Frequency Hopping MFSK modulation

systems, which are often implemented in underwater acoustic

modems (for example these modulation schemes are supported

by [1] and [2]). In this paper, we use the methodology

proposed in [3] which uses surrogates and a time-frequency

1In this paper we consider the total energy in the channel impulse response
(which is proportional to the signal to noise ratio) as a measure of the channel
quality.

approach to test the stationarity of the channel. In this method,

no assumption is made on the model which generates the data,

and the test is based on the comparison of time-frequency

features between a stationarized version of the data and the

original data set.

Many stationarity tests have been extensively studied in the

literature (such as those in [4], [5], [6]) and they have been

applied in different disciplines (such as biology, neuroscience,

signal processing, economics) but there are only few papers

on the stationarity test for the wireless channel quality. In

particular, these papers focus on the RF wireless channel,

while the stationarity properties of the underwater acoustic

channel have not been studied yet and this work is a first

contribution to investigate this problem. Examples of RF-

related stationarity studies include the following. In [7] the

stationarity of the complex baseband channel for a radio

mobile MIMO communication system is studied. In [8] the

authors study another stationarity test for the MIMO channel

and apply it to measured data, concluding that the greater the

number of transmitters and receivers the shorter the stationarity

interval of the MIMO channel. In [9] a study of the wide sense

stationarity has been conducted on the multipath pattern for a

car-to-car MIMO communication system.

In this work we analyze acoustic and environmental data

collected during the Surface Processes and Acoustic Commu-

nications Experiment (SPACE08), and we evaluate the chan-

nel stationarity using signals transmitted from and received

at fixed platforms. In contrast to common radio wireless

scenarios, the communications channel exhibits time varying

and statistically non-stationary behavior even without platform

motion. In this case, due to the shallow water depth (approxi-

mately 15 meters), the scattering of the acoustic signals off sur-

face waves affects a significant portion of the overall channel

impulse response. The time-varying scattering off the surface

waves results in a time-varying communications channel and

environmental changes which change the characteristics of the

surface wave field result in statistically non-stationary behavior

of the fluctuations in the communications channel over time

scales corresponding to the time scales of the environmental

changes. After estimating the interval over which the channel



Fig. 1. A scheme of the testbed deployment off the coast of the Martha’s
Vineyard Island.

fluctuations can be treated as stationary, we estimate the

power spectral density of the channel fluctuations over the

interval of stationarity. We find a dependence of the power

spectral density of the communications channel fluctuations

particularly on the intensity of the wind driven surface wave

variability.

The experiment was conducted during the month of October

2008 at the Martha’s Vineyard Coastal Observatory (MVCO)

operated by the Woods Hole Oceanographic Institution [10].

The data set is particularly interesting because the environ-

mental conditions such as the surface wave characteristics and

wind speed and direction varied significantly over the duration

of the experiment. While the collected data sets are from only

one deployment, the impact of surface variability on acoustic

channel stationarity is more generally interpretable in other

scenarios with similar geometries.

II. THE EXPERIMENTAL SCENARIO AND THE DATA SET

In this section we describe the scenario of the sea trials and

the collected data set. We also show the time series of the

estimated energy of the underwater acoustic channel, which

we will use in the test of stationarity.

A. Scenario

The SPACE08 scenario consists of one transmitter and six

fixed receiving stations, each of which is equipped with several

hydrophones. Figure 1 represents the experimental setup: the

four receiving stations that we will consider here are labeled as

S3, S4, S5 and S6. In this work, we consider the data collected

by one hydrophone at each of these systems. Systems S3 and

S4 are 200 meters from the transmitter in the Southeast and

Southwest directions, respectively. S5 and S6 are 1000 meters

from the transmitter in the Southeast and Southwest directions,

respectively. The seafloor at the experiment site was relatively

flat.

In this paper we show the results of the analysis of data

recorded from October 18 to October 27. The wind and wave

conditions, shown in Figures 2 and 3, varied substantially over

this period. For reference, Julian Date 292 was October 18 in

2008.
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Fig. 2. Time series of the wind speed and direction. The solid line shows
wind speed while the circles show wind direction.
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Fig. 3. Time series of the significant wave height. The significant wave
height is defined as the average wave height of the one-third largest waves.

The transmitted signals consist of multiple repetitions of a

4095 point binary maximum length sequence transmitted at a

symbol rate of 6.5 kbps and modulated at a central frequency

of 11.5 kHz. A transmission three minutes in duration was

made once every two hours. A maximum length sequence

is a particular pseudo noise signal that is spectrally flat.

Thanks to this property, it is possible to estimate the channel

impulse response by computing the correlation between the

transmitted signal and the received signal. We compute the

channel estimate over segments of the received signal that

are 400 symbols long (which corresponds to 60 ms). After
each estimation we shift the window by 100 symbols, which

corresponds to 15 ms, resulting in an estimate every 15 ms
over windows of 60 ms.

B. The Channel Energy Time Series

In this subsection, we analyze the energy of the estimated

channel impulse response, and its fluctuations in time. Calling



g(t) the estimated channel impulse response measured in the

time interval t ∈ [0, NTs], we estimate the energy as:

Eg = Ts

N−1
∑

i=0

|g(i)|2 (1)

where Ts is the sampling interval. Figures 4(a), 4(b), 5(a)

and 5(b) show the energy time series during Julian dates

from 292 to 301 (which corresponds to days from October

18 to 27) in a dB scale. We can notice that the energy of

the communication channel between the transmitter and the

closest receivers (S3 and S4) is spread in the same interval,

[−26,−38] dB, while the energy of links between the source

and systems S5 and S6 exhibits greater macro variability2.

More specifically the energy of the channel between the

transmitter and S5 is in the interval [−75,−45] dB, and the

range of fluctuations at S5 is much greater than it is at S6.
This observation implies that not only the distance but also the

orientation between the transmitter and the receiver matter for

underwater acoustic communications. It can be noticed that the

four time series have the same main fluctuations: this suggests

that those macro variabilities are due to environmental changes

(such as the surface roughness) which affect the receivers in

the same way. We observe a significant drop of the energy of

the channel at receivers S5 and S6, around the Julian date 300:
this can be explained by observing the environmental condi-

tions during that period. In Figures 2 and 3, we observe high

wind speed and large waves around date 300. These conditions

are more likely to increase the surface wave breaking and

the presence of significant subsurface bubbles. This can result

in a larger attenuation and scattering of propagating acoustic

signals that reflect off the surface as studied and reported

in [11]. This effect is more evident for longer links.

III. RESULTS

In this section we describe the stationarity test and we

show the estimated interval of stationarity for the data set

described so far. A stochastic process is said to be WSS when

its statistical moments of the first and second order are time

invariant. In practice, when the stationarity property is to be

tested for a time series, we could observe the fluctuations of

the power spectral density (PSD). Estimating either the PSD

or the correlation function requires the assumption that the

data are stationary. We choose the framework proposed in [3],

because no assumption is made on the model which generates

the data, and the test is based on the comparison of time-

frequency features between a stationarized version of the data

and the original data set. After having run the stationarity

test, we estimate the PSD of the energy over the stationarity

interval. We will show the results and provide a physical

explanation of these results by comparing the environmental

and acoustical data.

2For macro variability we mean fluctuations over intervals of several hours

A. The Stationarity Test

In this section we summarize the procedure that we used,

which is described in [3] (for more detail we refer the reader

to that paper). The method aims at determining the stationarity

time scale of a signal by comparing the local spectra statis-

tics to the global spectrum, obtained by marginalization. We

compute the local spectra by using the multitaper spectrogram

defined as:

Sg,K(t, f) =
1

K

K
∑

k=1

Sg
(hk)(t, f), (2)

where Sg
(hk)(t, f) is the spectrogram computed with the k-th

Hermite function, and is given by:

Sg
(hk)(t, f) =

∣

∣

∣

∫

g(s)hk(s− t)e−i2πfsds
∣

∣

∣

2

. (3)

The symbol hk(t) stands for the k-th Hermite function, whose

length is Th. We will vary Th in order to test the stationarity for

different time intervals. Usually what one can do is to consider

the variability of the local spectra with respect to the global

spectrum but, given that a variability is always observed, we

need to compare these variations to those between the local

and global spectra of the surrogate data. A surrogate data set

is a stationarized version of the experimental data set. It is

obtained by multiplying the amplitude of the Fourier transform

of the original time series by an independent identically dis-

tributed phase sequence and then applying the inverse Fourier

transform. In this way the correlation function of the obtained

process depends only on the interval between two sequences

and not on the absolute times at which they are taken. What we

compute are just realizations of the random process, therefore

computing more realizations by randomization improves the

test. We will call the number of randomizations J . Then

we compute the distance between the local spectra and the

global spectrum (GS) obtained by marginalization, which can

be expressed as:

GS = E[Sg,K(t, f)]t =
1

T

T
∑

i=1

Sg,K(i, f). (4)

The distance we compute is defined as a combination of the

Kullback-Leibler divergence and the log-spectral deviation,

respectively defined as [12]:

DKL(L,G) =

∫

Ω

(L(f)−G(f)) log
L(f)

G(f)
df, (5)

DLSD(L,G) =

∫

Ω

∣

∣

∣
log

L(f)

G(f)

∣

∣

∣
df, (6)

where L(f) and G(f) are respectively the local and the global

spectrum, and f is the frequency variable over the space Ω.
The combination that we consider is the following:

D(L,G) = DKL(L̃, G̃) · (1 +DLDS(L,G)) (7)

where L̃ and G̃ are the normalized versions of L and G.

We compute the N distances between the N local spectra



(a) Channel energy time series at S3 from Julian Date 295 to 301. (b) Channel energy time series at S4 from Julian Date 295 to 301.

Fig. 4. Channel energy of the link between the source and receiving stations S3 and S4 (200 m Southeast and Southwest).

(a) Channel energy time series at S5 from Julian Date 295 to 301. (b) Channel energy time series at S6 from Julian Date 295 to 301.

Fig. 5. Channel energy of the link between the source and receiving stations S5 and S6 (1000 m Southeast and Southwest).

and GS, and for each surrogate data we do the same, i.e.,

we have J sets with N distances each. We consider the

variance of each set of N distances, hence only a value for

the original data which we will indicate as Θ1 and J values

for the surrogates, which we will indicate as a vector Θ0. The

authors in [3] showed that the elements of Θ0 can be thought

as realizations of a random variable γ distributed according

to a Gamma distribution, which can be represented by the

following probability distribution function:

f(x; a, b) = xa−1 exp (−x/b)

baΓ(a)
for x ≥ 0, (8)

where a and b are two positive parameters. Thanks to this

result, we can estimate the parameters of the Gamma distribu-

tion from the variances computed on surrogates. We choose a

probability of failure of the test (in our case 5%) and, from the

cumulative distribution function, we determine the threshold

of the variance such that the probability that the variance is

less than or equal to that threshold is 95% (we will call this

threshold α). Then the test can be written as:

d(x) =

{

1 if Θ1 > α : non stationary;

0 if Θ1 ≤ α : stationary.
(9)

When the hypothesis of stationarity is rejected, a measure

of non-stationarity, which is called index of non-stationarity

(INS) is defined as

INS :=

√

Θ1

E[γ]
, (10)

where E[γ] is the average value of the random variable,

which we approximate as the average of the elements in the

vector Θ0. Given that the INS depends on the length of the

Hermite window Th, the authors in [3] defined a scale of non-

stationarity (SNS) which is the normalized value of Th such

that the INS is maximum:

SNS =
1

T
argmax

Th

INS(Th). (11)

This scale of non-stationarity gives a measure of how variable

the process is. In this work we do not compute this measure,

because we are primarily interested in the stationarity interval,

but leave it as an interesting topic for future study.

B. The Interval of Stationarity

In this subsection we present the results of the stationarity

test and the estimate of the interval of stationarity. In particular,

we are interested in assessing the wide-sense stationarity over

different time scales: a short time scale (of the order of tenths

of a second) which concerns physical layer applications, and



a long time scale (of the order of tens of seconds) for upper

layer applications, such as Automatic Repeat reQuest (ARQ),

medium access control (MAC) and routing protocols. For

example, we want to understand whether or not we can assume

stationarity in case we want to develop a predictor of the link

quality in the second layer of the ISO/OSI architecture, which

is responsible for packet reliability and for medium access

control. In this case we can trigger decisions, such as not

to access the channel in the next step because the predicted

channel quality is bad. Nevertheless, for a scenario where the

distances of nodes are between some hundreds of meters to a

few kilometers, the packet travel time 3 is between tenths of

seconds to one second 4, so that, considering the feedback and

possible retransmissions allowed in the protocol, the delivery

time becomes of the orders of a few seconds.

In the implementation of the procedure [13], we test the

stationarity of the process in a time window three minute long,

and we choose to compute J = 50 randomizations. Th is

varied from 1001 to a third of the length of the time series,

with increments of 500 samples at every iteration. We estimate

the spectrum by using the first 10 Hermite functions and we

estimate the Gamma distribution parameters as maximum-

likelihood estimates.

The test, performed on the whole data set, gives as a

result that the process is stationary for all the considered Th.

Therefore the process is stationary over at least a three-minute

period. This is verified for all the receiving systems. This

implies that we can study data adaptive estimators for both

the physical and the upper layers, assuming stationarity for

the received energy process. Moreover, thanks to this result,

we can estimate the PSD of the overall energy over three-

minute intervals, in order to see how variable the spectrum is

over time. This and some further insights are presented in the

following subsection.

C. The PSD of the channel energy

In this subsection we show the PSD estimated over a time

interval three minutes long, during which we have tested the

stationarity. Specifically, we consider systems in the middle

range S3 and S4, at which the intensity of the fluctuations

over periods of a few seconds is more evident than at systems

S5 and S6, where the acoustic waves are more attenuated. We

represent the PSD only for positive frequencies, because the

spectrum is a symmetric function, given that the energy time

series is a sequence of positive real numbers. Specifically, we

want to focus on the intensity of variations of the order of

few seconds, therefore we will show the PSD in the range

[0, 1]Hz. The PSD is estimated as

S(m, f) =
Ts

N

∣

∣

∣

N
∑

t=1

Eg(t)w(t) exp(−i2πft)
∣

∣

∣

2

(12)

3The travel time is the time that the sound wave needs to propagate from
the transmitter to the receiver.

4We consider here a sound speed of 1500 m/s, and distances between
200 m and 1500 m
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Fig. 6. Pseudocolor plot of the estimated PSD (linear scale) of the channel
energy at system S3, from October 18 to 27. The white periods correspond
to a lack of measured data.
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Fig. 7. Pseudocolor plot of the estimated PSD (linear scale) of the channel
energy at system S4, from October 18 to 27. The white periods correspond
to a lack of measured data.

where w(t) is the Hamming window, Eg(t) is the channel

energy process, and m is the index of the epoch of the

measurement.

Figures 6 and 7 show the pseudocolor plot of the estimated

PSD: frequencies are shown in the x-axis, while Julian dates,

at which data were collected, are indicated in the y-axis. We

observe that the PSD for system S4 reveals a peak at 0.3Hz,
which corresponds to a three seconds period of the intensity

fluctuations of the channel. This is observed at dates 292,
295 and 298. Similar considerations apply also for system S3,
although the peaks are less evident.

Figure 8 shows the pseudocolor plot of the magnitude of

the impulsive channel response during Julian date 298 at 4
AM for system S4. It can be noticed that the second arrival

has almost three peaks every ten seconds, which corresponds



Fig. 8. Pseudocolor plot of the channel impulse response at S4, during Julian
date 298.

Fig. 9. Time series of the wind driven surface wave energy.

to a peak at frequency 0.3Hz in the PSD. This behavior

can be explained by considering the environmental conditions,

and in particular the wind driven wave energy in the surface

wave spectra between 0.2Hz and 0.6Hz, which is shown in

Figure 9.

During the periods of low wind driven waves, as those at

dates 292, 295 and 298, the surface wave is coherent over a

large spatial region. This results in a greater area of coherent

reflection, which is modulated by the regular periodicity of

the surface roughness. This area of coherent reflection gives

rise to large and periodic fluctuations of the overall energy,

such as those observed in Figure 8. On the other hand, when

there are higher wind waves, such as those during dates 293,
296 and 300, the coherence of the scattering off the surface is

broken, decreasing the area of coherent reflection. This causes

many individually fluctuating but smaller intensity arrivals,

whose overall energy fluctuations are slower and less intense.

From Figures 6 and 7 we can see how variable the spectrum

is over long periods of time, which shows that the problem

of understanding the stationarity time scale was well-founded

even for static underwater channels. This study shows the

importance of the hypothesis evaluation, in order to both

construct predictors and develop better models for shallow

water propagation.

IV. CONCLUSION AND FUTURE WORK

In this paper we studied the stationarity and evaluated the

interval of stationarity of the energy of an underwater acoustic

channel. More specifically, we observed that, on average,

different links are characterized by at least three minutes long

intervals of stationarity. We provided a qualitative explanation

of the results by considering the relationship between the

environmental fluctuations and the stationarity of the acoustic

channel. This work is a first step of a more complete study

that we want to perform. Our future work will focus on the

extension of this approach to different metrics to represent

the channel quality, also including the case of coherent re-

ceivers, where phase changes affect the system performance.

In addition, a characterization of the cyclo-stationarity of the

channel quality will be useful in order to identify and exploit

any periodicity of the statistics of the channel in the design of

communications and networking protocols.
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