PERFORMANCE EVALUATION OF SNR PREDICTION SCHEMES
IN ACOUSTIC COMMUNICATION SYSTEMS
USING VARIABLE-RATE MODULATION

Paolo Casari*®, Beatrice Tomasi’, Konstantinos Pelekanakis®, Mandar Chitre’, Michele Zorzi*®

* Department of Information Engineering, University of Padova
via Gradenigo 6/B, 35131 Padova, Italy

® Acoustic Research Laboratory, Tropical Marine Science Institute
National University of Singapore, Singapore, 119223

¢ Consorzio Ferrara Ricerche, via Saragat 1, 44100 Ferrara, Italy

Contact author: Paolo Casari, via Gradenigo 6/B, 35131 Padova, Italy,

fax: +390498277699, E-mail: casarip@dei.unipd.it

E-mail of all authors:

{casarip, tomasibe, zorzi}@dei.unipd.it , {costas,mandar}@arl.nus.edu.sg

Abstract: In this paper, we consider a variable-rate communication system, for which the digi-
tal modulation format in use can be varied across subsequent transmissions, i.e., by employing
higher spectral efficiency schemes whenever the Signal-to-Noise Ratio (SNR) so allows. In or-
der to adapt to the evolution of the SNR, the transmitter must be informed on the channel qual-
ity via feedback from the receiver. However, in multiuser networks, the amount of feedback
may account for a significant portion of the injected traffic, and thus be subject to interference,

both from data and from other feedback packets.

To alleviate this problem, we propose the usage of SNR prediction schemes, which relieve the
need for frequent feedback by predicting the evolution of the SNR time series over a window of
pre-defined length. We compare several schemes and discuss their capability to improve the
communications performance in terms of throughput efficiency and outage probability.

Keywords: Variable-rate modulation, SNR prediction, LPF, Kalman filter, RLS, Markov mod-
eling, throughput efficiency, outage, performance comparison.



1. INTRODUCTION AND MOTIVATION

Variable-rate modulation (VRM) is an established technique in terrestrial radio communica-
tions [ 1], where it is employed to adapt the robustness of the transmission system to the current
channel state. VRM makes use of feedback from the receiver node (and possibly past knowl-
edge of the channel SNR evolution) in order to choose the modulation scheme, e.g., by avoid-
ing that spectrally efficient schemes are used in the presence of a very low SNR, which would
result in frequent transmission errors. Similarly, VRM also tries to ensure that the employed
modulation fully exploits the current channel capabilities, by not choosing low-rate modulation
formats in the presence of sufficiently high SNR. A successful VRM scheme would therefore
improve the throughput of the communication system by matching the transmission scheme to
the channel, possibly requiring the least frequent feedback.

The capabilities of a good VRM system can be of great help for underwater acoustic com-
munications. In fact, the acoustic channel state is often subject to changes due to several envi-
ronmental effects, such as sound speed variations over the water column (which induce differ-
ent refraction effects and ultimately change multipath patterns), wind-induced surface wave
profiles, internal waves [2], as well as seasonal and day/night cycles. VRM schemes can track
such changes via feedback from the receiver. This feedback, however, must be sufficiently fre-
quent. Previous work [3] has shown that if the Signal-to-Noise Ratio (SNR) over a link is
known only once every 15 s (the time separation between subsequent transmissions in the data-
set considered there) it is likely that the wrong modulation is chosen, unless the average chan-
nel SNR is sufficiently high, typically over 30 dB. In a typical network, several entities may
access the channel using some sort of medium access control (MAC) scheme, and then carry
out transmissions, possibly employing a form of error control such as Automatic Repeat re-
Quest (ARQ) [4], [8]. In this context, ARQ feedback messages can also serve to report SNR in-
formation to be used for adapting the transmit modulation scheme.

It has been shown that sending feedback very often may not be beneficial in multiuser net-
works, and that employing non-error-controlled schemes may actually yield better throughput
and delivery ratio performance in several scenarios [7]. In order to meet the channel knowledge
requirements of VRM schemes, while still keeping the amount of feedback to a minimum, in
this paper we leverage on standard predictive filtering techniques as well as simple statistical
models for the evolution of the SNR time series, and study the performance of a VRM scheme
as a function of the feedback delay. In the periods between subsequent feedback packets, a
prediction technique is applied to infer future SNR values based on the past knowledge of the
SNR process. We compare the performance of the system in terms of the probability of outage
events (defined as the choice of a modulation scheme not robust enough with respect to a bit
error rate constraint), which reflect the capability of the scheme to actually follow the behavior
of the SNR time series, and in terms of the throughput efficiency (defined as the average num-
ber of bits correctly transmitted per channel use, given the length of the transmit packet). We
carry out our evaluation on the SPACE’08 dataset, collected off the coast of Martha’s Vine-
yard, MA, USA, in a very shallow water environment.

2. SYSTEM DESCRIPTION AND CONSIDERED PREDICTION TECHNIQUES

In the following evaluation, we will focus on a single transmitter-receiver link where VRM
is employed at the transmitter side. The modulation schemes we focus on are Binary Phase
Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), 16-, 64- and 256-Quadrature
Amplitude Modulation (QAM), which have a spectral efficiency of 1, 2, 4, 6 and 8 bits per



channel use, respectively. We assume that each modulation should be used only when the fore-
seen bit error rate (BER), given the available estimate of the future SNR value, is less than
10, which corresponds to the following vector of minimum SNR thresholds in dB:
0% = [8.44, 117,184,24.4,30.4 ], where the first element in the vector corresponds to the min-
imum SNR that, under an Additive White Gaussian Noise (AWGN) assumption, ensures a
BER of less than 10~ to the BPSK modulation, the second to QPSK, and so forth. An SNR of
less than 8.44 dB means that the system is certainly in outage, as even the most robust modula-
tion is unable to achieve the BER objective. However, we note that the thresholds above have
not been chosen based on packet error rate. Therefore, the transmission of short packets may be
successful even if the system is in outage, depending on how small the actual SNR value is
with respect to the threshold of the modulation scheme in use.

Call x, the nth sample of the time series of the SNR. The objective of prediction algorithms

is to provide an estimate x,,,, of the SNR attime n+M , M =1, 2, ..., given the past (known)
samples of the time series, x,, x, |, X, ,, etc.

The first predictor we consider is an order-16 linear predictive filter (LPF), which basi-
cally models the SNR series as the output of a 16-pole filter whose input is white noise. The
coefficients of the filter are derived using the Yule-Walker equations [5]. This predictor is sim-
ple, but makes the implicit assumption that the time series to predict has stationary statistics. In
addition, the Yule-Walker equations take into account the estimated correlation of the signal,
which decreases as the signal is sub-sampled, making future prediction increasingly noisier as
M increases.

The second predictor we consider is again a linear filter, whose taps are computed using the
Recursive Least Squares (RLS) algorithm [5] with 5 taps, and a forgetting factor of 0.9. Un-
like the LPF, the RLS algorithm makes no implicit assumptions that the signal is stationary,
and adapts instead the filter taps based on the error incurred by previous predictions.

The third predictor is a Kalman filter which assumes the SNR time series to have locally
constant first-order derivative, i.e.,
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where 7, is the sampling interval of the SNR series. The Kalman filter takes as input an esti-

mate of the variance of the noise affecting the state observations [6]: a lower value makes the
filter trust the measured SNR (and effectively turns it into a follower, i.e., a filter that almost
replicates the previous known SNR value at any given time), whereas a higher value makes the
filter rely more on the model. In the following we employed a value of 0.5, which strikes a bal-
ance between prompt reaction to variations and adherence to the state evolution model.

The fourth prediction technique is based on a more conservative hysteresis behavior: basi-
cally, two sets of thresholds are defined, 0,, and 0, , the first containing the SNR values to

be overcome in order to switch to a more spectrally efficient modulation, the second containing
the SNR values beneath which the modulation is switched down to a more robust one. In the
following, these thresholds are set to 6, =1.256 and 0 ,,,, =1.10, where 6 contains the li-

near-scale values of the elements of the vector 8’ introduced at the beginning of this Section.
These values will be shown to increase the resilience of the system to spurious SNR variations,
while still allowing a sufficiently prompt adaptation of the modulation scheme, However, the
scaling coefficients could be increased arbitrarily to provide greater robustness at the price of a
higher probability that the channel is not fully exploited.

As a further note, there are two ways to provide the transmitter with the feedback it needs to
choose the modulation: i) every time a feedback packet is sent, the receiver includes a trace of
all SNR values measured since the last feedback packet was sent, so that the transmitter can



run the predictive algorithms and tune the modulation correspondingly; ii) the receiver runs the
predictive algorithms and informs the transmitter about the sequence of modulations to be cho-
sen until the next feedback. The first strategy requires longer feedback packets, whose size may
grow considerably if the time period between subsequent feedbacks is long (as increasingly
more SNR samples should be inserted into the packet); in turn longer periods would also make
feedback more prone to channel errors. Strategy ii) requires much shorter feedback packets, as
the receiver only has to state which modulation the transmitter should use. The number of
schemes is typically limited, and can be addressed using just a few bits (3 per transmission, in
our case). Thus, even in case of very long feedback intervals (e.g., one feedback packet every
20 data packets), the feedback payload would be only 60 bits long. In turn, strategy ii) is more
prone to losses, as no prediction is performed at the transmitter side.

The fifth and last prediction technique we consider is based on a Markov model. This mod-

el contains as many states as the elements of the vector 0° plus one. Call s(¢) the sequence of
the states of the Markov chain. We have s(¢)=i if and only if 0“*(i—1) <SNR(#) <0% (i),

where 0% (0)=0. The prediction performed by the Markov chain is based on the maximiza-
tion of the function ¢(5,s) which is equal to the rate of the modulation corresponding to s,
R(5), if the channel is able to support it, i.e., if § <s, and to 0 otherwise (in this case, we as-
sume that modulation cannot be supported by the channel, hence the transmission would be in
error). Note that ¢(5,s) is one possible definition of the throughput efficiency of a VRM sys-
tem. In this paper, throughput efficiency is defined based on the packet error rate rather than
the outage probability, as G(5,s) = R(3)(1-BER . (y) ), where BER(y) is the bit error rate
of the modulation related to state 5 if the actual signal-to-noise ratio is equal to y , and an in-
dependent bit error model is assumed to compute the probability that a packet is correct. The
prediction of the following state is formulated as an optimization problem, i.e., the next state §
is chosen among all possible states 5, given the previous state i, such that the expected
throughput is maximized: § = arg max E,[0(5,s)|i]; substituting the definitions above yields

§ = argmax R(5) P[5 < s |i], where the probability that the predicted state is less than or equal

to the actual state can be obtained from the transition probability matrix of the Markov chain.

3. THE SPACE’08 DATASET

The dataset we consider in this paper is SPACE’08, which has been collected between Oc-
tober 18 and 27, 2008 at the Martha’s Vineyard Coastal Observatory, operated by the Woods
Hole Oceanographic Institution, MA. The experiment performed for the collection of the data-
set involved the transmission of 3-minute signals at a carrier frequency of 11.5 kHz frequency
once every two hours, from a single location. We consider one of the six receivers that were
deployed, namely S4, positioned at 200 m from the transmitter in the Southwest direction. Giv-
en the very shallow water flat-bottom environment, the time-variations of the channel were
mainly induced by the wind-driven surface roughness and the underwater currents.

The channel impulse responses were estimated every 15 ms from the received signals,
which consist of a number of sequentially transmitted m-sequences, each composed of 4095
BPSK-modulated symbols sent at a rate of 6.5 kbps. The SNR estimates are computed as the
L,-norm of each impulse response, scaled to simulate higher or lower power, and averaged

over 60 ms (i.e., 4 samples), in order to simulate SNR estimation over a typical preamble
length. In particular, the stability of the SNR traces makes it difficult that more than two SNR
thresholds in 0“® are crossed in any experiment, and correspondingly, only 3 of the available



modulation schemes are effectively employed. In the following, we will scale the SNR so that
the limited dynamics of the channel traces employed in our analysis allow the usage of the
BPSK, QPSK and 16-QAM modulations. We assume that packet transmissions take place at
the pace of one every 7, =1.2s (which includes the transmission time and propagation delay)

and correspondingly subsample the time series.

All algorithms described above (with the exception of the thresholds with hysteresis), re-
quire a training period: the LPF needs it to estimate the autocorrelation of the time series, the
RLS for making the filter weights converge, the Kalman filter to perform some first prediction-
correction cycles and the Markov model to estimate the transition probability matrix of the
Markov chain. For this reason, for each time series taken from the data set (and lasting around
170 s), we take the first 60 s (i.e., 60/7, =50samples) for training. In the following Section,

we compare the prediction techniques in terms of the average throughput efficiency (defined in
terms of the packet error rate as per the G(5,s) function introduced above), as well as the out-

age probability. Unless otherwise stated, the packet length is set to 256 bits, which makes the
threshold BER of 10™ conservative, as discussed in Section 2.

4. RESULTS

In Fig. 1, we evaluate the capability of the predictors to follow the SNR time series, for two
different values of the delay between subsequent feedbacks, 4.8 s (1 feedback packet every 4
data packets, dark gray dashed lines) and 24 s (1 every 20 packets, light gray dashed lines).
Fig. 1(a) refers to the LPF predictor, whose filter taps are derived via the Yule-Walker equa-
tions: we observe that the filter under-estimates the absolute value of the time series; however,
for a low delay it still can follow its general trend, whereas for larger delays the estimates of
the correlation between  farther samples become increasingly worse, and
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Fig. 2. Throughput efficiency for all policies for a feedback delay of 1.2 s.
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Fig. 3. Throughput efficiency for all policies for a feedback delay of 12 s.

the filter expectedly predicts an increasingly low value. On the contrary, on this specific time
series, the RLS predictor can follow the average trend of the signal, due to the adaptation of
the filter taps and to the fact that it does not need the predicted signal to have stationary statis-
tics. However, instantaneous prediction can still be off the ground truth by 1 to 2 dB: in our
case, this is expected not to play a major role, as the distance between the thresholds in the vec-
tor 0 introduced above is larger. The performance of the Kalman filter in Fig. 1(c) shows a
similar behavior, with the exception of some overshoots in the long delay case. The reason is
that the actual SNR evolution model is unknown, hence we have to resort to basic regularity
assumptions, such as a fixed first-order derivative of the process. Hence, when the estimated
variation of the signal is large (typically close to the limits of the prediction window, and in
any event when the training signal becomes sparser due to undersampling), the Kalman filter
predicts a significantly higher SNR with respect to the actual value (in some realizations, the
overshoot can be even larger).

We compare the throughput efficiency performance of the different policies in Figs. 2 and 3
across different experiments, for a feedback delay of 1.2 s (1 feedback packet every data pack-
et) and 12 s (1 every 10), respectively. The policies introduced above are also compared
against the perfect channel state information (CSI) case, where the SNR is known without error
and therefore the chosen modulation always respects the BER constraints; a simple policy is
also added which assumes the last known value of the SNR to be valid until new feedback ar-
rives (Hold).
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Fig. 5. Outage probability for all policies as a function of the feedback delay.

From the pictures above we observe first of all that even such a simple heuristic policy as
the hysteresis predictor improves significantly over the Hold strategy: this result is due to the
more conservative switching thresholds of the former, which avoid, e.g., having to hold a spec-
trally efficient modulation when the channel does not support it, while waiting for the next
feedback packet to arrive. The LPF, RLS and Kalman predictors show even higher throughput,
very close to that of the perfect CSI case. Actually, especially in the longer feedback delay case
in Fig. 3, the Kalman filter shows a slightly higher throughput than with perfect CSI: this is due

to the chosen SNR thresholds, which correspond to a BER of 10_4, and to the comparatively
short packet length of 256 bits. In fact, with such parameters a transmission employing the
wrong modulation has a chance to succeed. In this regard, it is interesting to compare the be-
havior of the Kalman and Markov predictors: since the latter chooses modulations conserva-
tively, with the objective to both maximize throughput and minimize the outage probability,
the prediction results in QPSK being used almost always (with a throughput efficiency equal to
2), even when a stronger modulation could be supported.

We conclude the evaluation with Figs. 4 and 5, detailing a comparison of, respectively,
throughput efficiency and outage probability as a function of the feedback delay. Fig. 4 con-
firms the behavior of the Kalman predictor observed previously, i.e., that increasing feedback
delay leads to choosing the transmit modulation optimistically. Conversely, Fig. 5 confirms the
capability of the Markov model to avoid outage events with high probability, as opposed to the
Kalman predictor, whose number of outage events increases for increasing feedback delay. We



note that this is not necessarily due to the technique per se: part of the reason lies in the SNR
evolution model, which does not reflect the behavior of the SNR as the time series is strongly
subsampled in order to predict future SNR values. We also note that the LPF achieves an even
lower outage probability, but recall that this result depends on the decreasing behavior of its
SNR estimates as the feedback delay increases, see Fig. 1(a).

5. CONCLUSIONS

In this paper, we compared the performance of several prediction techniques applied to Va-
riable-Rate Modulation (VRM) schemes, in order to improve the throughput efficiency of the
transmission and possibly decrease the probability of outage events, when a modulation
scheme not supported by the current SNR is employed. Our schemes can be applied to the time
series of the SNR estimated at the receiver, which are quite straightforward to collect from the
preambles of the received packets.

Our results showed that a simple Kalman predictor and a 5-tap RLS predictor perform quite
well, and can achieve a throughput efficiency similar to that of the case of perfect channel state
information at the transmitter. In case the optimization of the system throughput is given lower
priority than the need to avoid outage events, the Markov model analyzed in this paper
achieves very good results: this effect is due to its design, that limits the probability to choose a
modulation not supported by the channel given the predicted SNR values.
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