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Abstract—While purely sparse channel models have been
recently investigated for underwater acoustic channels, exper-
imental propagation data suggests that the channel is more
complex. Thus, herein we propose a novel channel model based
on both diffuse and sparse components. Tailored to this hybrid
model, channel estimators are designed for different scenarios
which differ in the amount of side information available at
the receiver. The proposed channel estimation methods are
compared to unstructured and purely sparse estimators. The
numerical results show that the new channel estimation schemes
considerably improve the estimation accuracy and the bit error
rate performance over conventional channel estimators. Further,
a mean squared error analysis of the proposed estimators is
conducted in two asymptotic regimes (high SNR and low SNR)
enabling a simple characterization and thus comparison of the
proposed estimators.

Index Terms—Ultra Wideband, channel estimation, sparse
approximations, Bayesian estimation, channel modeling

I. INTRODUCTION

UnderWater Acoustic (UWA) communication is an emerg-

ing technology, based on the transmission of sound waves,

designed for applications such as environmental monitoring,

marine surveillance and ocean exploration [1], [2].

The performance of coherent UWA transceivers relies on

the availability of accurate channel estimation. Failure to do so

results in a Bit Error Rate (BER) degradation, thus negatively

affecting the upper layers of the protocol stack. For this reason,

it is important to design accurate channel estimation strategies,

by leveraging the statistical and structural properties of the

UWA propagation channel.

Owing to the wideband nature of the UWA channel and the

use of acoustic waves, which are better suited to underwater

communications than conventional radio technologies, the

UWA channel is characterized by large propagation delays,

significant delay spread of the channel, high attenuation,

low transmission bandwidth and Doppler spread [3], [4]. In

particular, the low speed of sound in the water, compared

to the speed of light of the radio signal, incurs large inter-

arrival times of the Multi-Path Components (MPCs) relative

to the delay resolution at the receiver. Hence, most MPCs,

arising from scattering and reflections in the environment, can

be resolved at the receiver and, in the discrete baseband rep-

resentation of the channel, only some of the resolvable delay

bins carry a significant energy contribution, yielding a sparse

channel representation. For this reason, channel estimation

techniques based on sparse approximation and compressed

sensing have been proposed in the literature (e.g., see [5]–[8]).

These techniques have been shown to outperform unstructured

estimators [6]. Moreover, sparse estimators have been shown

to be robust even when the channel does not exhibit a fully

sparse nature [9].

However, recent propagation studies suggest that, in some

scenarios of interest for UWA applications, e.g., shallow

water, where the reflections of the sound waves from the

seabed and sea surface give rise to a richer interaction among

the MPCs, also diffuse components are present [10]. These

arise from propagation phenomena such as scattering from

rough surfaces, unresolvable MPCs, inhomogeneities in the

water column, causing constructive and destructive multi-path

interference patterns at the receiver. These phenomena are not

properly modeled by a purely sparse channel, but rather by a

diffuse contribution.

To this end, in this work we propose a novel Hybrid

Sparse/Diffuse (HSD) model for UWA channels, which is

suitable for the design of channel estimation strategies and

estimator analysis. The HSD model has been originally pro-

posed in our previous work [11] for the Ultra WideBand

(UWB) channel. In fact, due to their wideband nature (i.e., the

use of a large transmission bandwidth, relative to the carrier

frequency), the UWB and UWA channels exhibit common fea-

tures, e.g., resolvable MPCs, diffuse scattering and frequency

dispersion.

While effectively modeling the main propagation mech-

anisms in UWA, e.g., a sparse component to model the

resolvable MPCs, and a diffuse component to model diffuse

scattering, unresolvable MPCs and frequency dispersion, this

model can be used as a basis for the design of channel

estimation strategies. Based on the HSD model, in this work

we propose channel estimators for four physically motivated

estimation scenarios, differing in the amount of side infor-

mation available at the receiver. We compare the proposed

estimators to unstructured estimators, e.g., Least Squares (LS),

and conventional sparse or diffuse estimators, which discard

either the diffuse or the sparse component of the channel,

showing that the proposed HSD model and channel estimators

significantly improve the performance, from both a Mean

Squared Error (MSE) and BER perspective.

Additionally, we present an high and low Signal to Noise

Ratio (SNR) analysis of the MSE of the Generalized MMSE

(G-MMSE) and Generalized Thresholding (G-Thres) estima-

tors, which are designed for the case where the sparse coef-



ficients are treated as deterministic unknown parameters. We

prove that in these regimes, it is beneficial to underestimate

the sparsity level in the estimation of the sparse component of

the channel. This behavior is confirmed by simulation and, to

some extent, it holds also in the medium SNR regime where,

in fact, a too aggressive approach in the estimation of the

sparse component may lead to poor performance.

The paper is organized as follows. In Section II, we present

the HSD model. In Section III, we discuss four estimation

scenarios, which differ in the amount of side information

available at the receiver for the purpose of channel estimation.

In Section IV, for each scenario, we design channel estimators

based on the HSD model. In Section V, we present the

MSE analysis of the G-MMSE and G-Thres estimators, in

the high and low SNR regimes. In Section VI, we discuss the

scenario with non-orthogonal pilot sequences. In Section VII,

we present simulation results. In Section VIII, we conclude

the paper.

We use lower-case bold letters for column vectors (a), and

upper-case bold letters for matrices (A). The scalar ak (or

a(k)) denotes the kth entry of vector a, and Ak,j (or A(k, j))
denotes the (k, j)th entry of matrix A. The transpose, complex

conjugate of A is denoted by A∗. A positive definite (positive

semi-definite) matrix A is denoted by A ≻ 0 (A � 0). The
K × K identity matrix is defined as IK . The vector a ⊙ b

is the component-wise (Schur) product of vectors a and b.

We use p(·) to indicate a continuous or discrete probability

distribution, and Pr (·) to indicate the probability of an event.

The expectation of random variable x, conditioned on y, is

given by E [x|y]. The circularly symmetric complex Gaussian

distribution with mean m and covariance matrix Σ is denoted

by CN (m,Σ); the Bernoulli distribution with parameter q is

denoted by B(q).

II. SYSTEM MODEL

A. Observation Model

We consider a single-user system. The source transmits an

orthogonal pilot sequence x(n), n=−L + 1, . . . , N − 1. At
the receiver, we have

y(k) =

L−1
∑

l=0

h(l)x(k − l) + w(k), k = 0, . . . , N − 1, (1)

where h(l), l = 0, . . . , L−1 is the discrete baseband represen-

tation of the channel, with delay spread L ≥ 1, N ≥ L is the

length of the observed sequence, and w(k) ∼ CN (0, σ2
w), k =

0, . . . , N − 1 is an i.i.d. noise sequence.

We can restate the observation model in matrix form as

y = Xh+w, (2)

where X ∈ C
N×L is the Toeplitz matrix associated with

the pilot sequence, h = [h(0), h(1), . . . , h(L− 1)]
T

is the

channel vector, and w = [w(0), w(1), . . . , w(N − 1)]
T ∼

CN
(

0, σ2
wIL

)

is the noise vector.

Since the Least Squares (LS) estimate is a sufficient statistic

for estimating the channel, we employ the following observa-

tion model, rather than (2):

hLS = (X∗X)
−1

X∗y = h+
√
S
−1

n, (3)

where, due to the orthogonality of the pilot sequence, we have

assumed σ−2
w X∗X = SIL, and n ∼ CN (0, IL) is the noise

vector; we define S > 0 to be the estimation SNR. In the

following, with a slight abuse of notation, we refer to hLS as

the observed sequence, and to
√
S
−1

n as the noise sequence.

B. Channel Model

The channel h obeys the HSD model [11]–[13]

h = hs + hd, (4)

where hs = as ⊙ cs is the sparse component, and hd is the

diffuse one. In particular, the vector as is the sparsity pattern,

with Bernoulli entries with Pr (as(k) = 1) = q ∀k, where
q represents the sparsity level of the channel. The vector cs
is the sparse coefficients vector. Notice that this is a dense

vector; however, the sparsity pattern as, which is expected to

exhibit few non-zero entries, owing to its Bernoulli nature,

selects the active entries from the sparse coefficient vector, so

that hs is sparse. We assume E [csc
∗
s] = Λs, where Λs is

diagonal with entries given by the PDP of the active sparse

components Λs(k, k) = Ps(k), k = 0, . . . , L − 1. Finally,
the diffuse component obeys hd ∼ CN (0,Λd), where the

covariance matrix Λd is diagonal with entries given by the

PDP Λd(k, k) = Pd(k), k = 0, . . . , L− 1.

III. CHANNEL ESTIMATION SCENARIOS

The HSD model introduced in Section II-B is parameterized

by the sparsity level q, the PDP of the diffuse component

Pd(·), and the PDP of the sparse component Ps(·). These
parameters are not available at the receiver a priori, but

need to be estimated. The ability of the receiver to estimate

them depends on a number of factors, including the length of

the observation window available at the receiver for channel

estimation purposes and the degree of mobility.

Notice that the sparse component hs arises from resolvable

MPCs due to reflections and scattering in the surrounding

environment. Significant variations of the amplitude and de-

lays of these components happen on a relatively large time-

scale (large scale fading), due to the relative motion of the

transmitter, receiver and scatterers. Hence, the PDP Ps(·) can
be estimated over a "large" observation window, sufficient to

average over the large scale fading.

On the other hand, the diffuse component hd arises from

propagation phenomena such as the unresolvable MPCs or

scattering from rough surfaces. Significant variations of the

diffuse component happen on a much shorter time-scale (small

scale fading). Hence, the PDP Pd(·) can be accurately esti-

mated over a "short" observation window, sufficient to average

over the small scale fading.

Alternatively, we can exploit the structure of the PDP

Pd(·) to average the fading over the delay dimension, rather



than over subsequent realizations of the fading process. In

particular, we assume an exponential PDP Pd(k) = βe−ωk,

parameterized by the power β and the decay rate ω. We can

exploit this low order parameterization of the PDP to enhance

the estimation accuracy. In the limit, with this approach we can

estimate the PDP based on a single snapshot of the channel.

As to the sparsity level q, it can be estimated by first

separating the diffuse and sparse components, and then by

counting the occurrences of active sparse components. In order

to separate the sparse component from the diffuse one, we

need at least an estimate of the PDP Pd(·). Hence, we assume

that the sparsity level q can be estimated over an observation

window larger than the one required to estimate the PDP Pd(·),
but shorter than the one required to estimate the PDP Ps(·).
Based on these considerations, depending on the length of

the observation window available at the receiver, we identify

four different scenarios listed in Table I, differing in the

amount of side information which can be exploited at the

receiver in the estimation phase.

In the next section, we design channel estimators for each

estimation scenario.

TABLE I
ESTIMATION SCENARIOS, BASED ON THE AMOUNT OF SIDE INFORMATION

AVAILABLE AT THE RECEIVER. K: KNOWN, U: UNKNOWN.

Scenario Λd q Λs Estimator

S1 Single Snapshot of the channel U U U LS

S2 Single Snapshot of the channel K U U G-MMSE,

(PDP structure exploited) G-Thres

S3 Avg. over Small scale fading K K U G-MMSE,

G-Thres

S4 Avg. over Small & Large scale fading K K K MMSE

IV. CHANNEL ESTIMATORS FOR THE HSD MODEL

In this Section, we design estimators for scenarios S2, S3

and S4 in Table I. Scenario S1 will not be further considered,

since in this case we use the LS estimator hLS . In particular, in

Section IV-A we design the G-MMSE and G-Thres estimators

for scenarios S2 and S3. In Section IV-B, we design the

MMSE estimator for scenario S4.

A. G-MMSE and G-Thres estimators (Scenarios S2 and S3)

For these scenarios, we assume that the PDP Pd(·) is known
at the receiver, whereas the PDP Ps(·) is unknown, so that cs
is treated as a deterministic unknown vector.

We also assume that the sparsity level q is unknown (this is

true in scenario S2, but false in scenario S3), and an estimate

q̃ of q, which might be different from the real q, is used in the

estimation phase. This approach differs from [11], where the

true sparsity level is used. In Section V, and by simulation in

Section VII, we will show that using q̃ < q often improves the

MSE estimation accuracy, thus implying that exact knowledge

of this parameter is not crucial to the performance of the

estimators.

The G-MMSE and G-Thres estimators are given by the

following steps:

1) The sparse coefficient vector cs (modeled as a determin-

istic unknown vector) is estimated via Maximum Likeli-

hood (ML), assuming hd as noise. We have ĉs = hLS .

2) The sparsity pattern is estimated via either MMSE (G-

MMSE estimator) or MAP (G-Thres estimator), assum-

ing hd as noise, ĉs = hLS , and the sparsity level q̃,

rather than the true q. We have

âs(k) =











1

1+eα exp

{

−
S|hLS(k)|2

1+SPd(k)

} MMSE

I
(

|hLS(k)|2 ≥ α
1+SPd(k)

S

)

MAP,

(5)

where I(·) is the indicator function, and we have defined
α = ln

(

1−q̃
q̃

)

.

3) The sparse component is estimated as

ĥs = âs ⊙ ĉs = âs ⊙ hLS . (6)

4) The diffuse component is estimated by MMSE, based

on the residual estimation error hLS − ĥs:

ĥd(k) =
SPd(k)

1 + SPd(k)
(1− âs(k))hLS(k), ∀k. (7)

5) The overall HSD estimate is given by

ĥ = ĥs + ĥd. (8)

B. MMSE estimator (Scenario S4)

In scenario S4, the receiver knows all the deterministic

parameters of the channel, i.e., the PDPs of the sparse and

diffuse components, Ps(·) and Pd(·), respectively, and the

sparsity level q. Under this assumption, we can design an

MMSE estimator of the channel, which clearly minimizes

the MSE. We assume cs ∼ CN (0,Λs), which leads to the

classical Gaussian (linear) MMSE estimator of the sparse

coefficient vector.

The MMSE estimator develops along the following steps,

for all k = 0, . . . , L− 1:

1) Assuming as(k) = 0 (no active sparse component),

perform an MMSE estimate of the diffuse component:

h
(MMSE)
d (k) =

SPd(k)

1 + SPd(k)
hLS(k). (9)

2) Assuming as(k) = 1 (the kth channel entry is the sum of

sparse and diffuse components), perform a linear MMSE

estimate of the sparse+diffuse channel entry:

h
(MMSE)
s+d (k) =

S (Ps(k) + Pd(k))

1 + S (Ps(k) + Pd(k))
hLS(k). (10)

3) The overall estimate is the weighted sum of

h
(MMSE)
s+d (k) and h

(MMSE)
d (k), weighted by the

posterior probability of an active and non-active sparse

component, respectively. This is given by

ĥMMSE(k) = E [h(k)|hLS(k)] (11)

= qpost(k)h
(MMSE)
s+d (k) + (1− qpost(k))h

(MMSE)
d (k),



where, using Bayes’ theorem and letting ρk = SPs(k)
1+SPd(k)

,

we have defined

qpost(k) = Pr (as(k) = 1|hLS(k)) (12)

=
1

1 + 1−q
q

(1 + ρk) exp
{

−ρk
S|hLS(k)|2

1+S(Ps(k)+Pd(k))

} .

V. MSE ANALYSIS

In this section, we perform the MSE analysis of the G-

MMSE and G-Thres estimators, which allows a concise per-

formance comparison of the two estimators.

We define the MSE of the estimator ĥ as a function of the

estimation SNR S as

MSE(S) = E

[

∥

∥

∥
ĥ− h

∥

∥

∥

2

2

]

=

L−1
∑

k=0

E

[

∣

∣

∣
ĥ(k)− h(k)

∣

∣

∣

2
]

. (13)

The expectation is computed with respect to the realizations

of the channel h and of the noise n (the estimator is a

deterministic function of hLS = h+
√
S
−1

n).

Due to the difficulty in studying the MSE performance

in the medium SNR range, we perform the analysis in the

low and high SNR regimes. Moreover, as a consequence

of the decomposition (13), and since we are considering

per-tap estimation approaches (which are optimal under our

assumption of orthogonal pilot sequences), it is sufficient to

study the asymptotic behavior of the MSE associated with the

estimator of the kth channel tap, i.e.,

MSEk(S) = E

[

∣

∣

∣
ĥ(k)− h(k)

∣

∣

∣

2
]

. (14)

For ease of notation, we define y = hLS(k), ĥ(y) = ĥ(k),
as = as(k) ∼ B(q), cs = cs(k), hd = 1√

Pd(k)
hd(k) ∼

CN (0, 1) (normalized to the power of the diffuse component),

h = h(k), n = n(k) ∼ CN (0, 1), Pd = Pd(k) and

MSE(S) = MSEk(S) = E

[

∣

∣

∣
ĥ(y)− h

∣

∣

∣

2
]

. Moreover, we

define f
(√

Sy, n
)

= S
∣

∣

∣
ĥ(y)− h

∣

∣

∣

2

, so that MSE(S) =

1
S
E

[

f
(√

Sh+ n, n
)]

. We use the proper sub-script to dis-

tinguish between different estimators, when necessary. With

this notation, the observation model associated with the kth

channel entry is given by

y = ascs +
√

Pdhd +
1√
S
n. (15)

Notice that for the LS estimator ĥ(y) = y we have

MSELS(S) = S−1. Alternatively, S ·MSELS(S) = 1, ∀S >

0. Similarly, for the G-MMSE and G-Thres estimators, in the

high and low SNR we have, for Slim ∈ {0,+∞},

lim
S→Slim

S ·MSE(S) = lim
S→Slim

E

[

f
(√

Sh+ n, n
)]

= QSlim
.

We study the asymptotic behavior QSlim
of the G-MMSE

and G-Thres estimators in the following regions:

• High SNR, no diffuse component (Slim = +∞, Pd(k) =
0 ∀k)

• High SNR, with diffuse component (Slim = +∞,

Pd(k) > 0 ∀k)
• Low SNR (Slim = 0).

We have the following Lemma. Due to space limitations, the

proof is given in [13].

Lemma 1 (Exchange of limit and expectation). For the G-

MMSE and G-Thres estimators, Slim ∈ {0,+∞}, we have

lim
S→Slim

S ·MSE(S) = E

[

lim
S→Slim

f
(√

Sh+ n, n
)

]

.

A. High SNR, no diffuse component

In the high SNR region (S → +∞) with Pd = 0, for the
G-MMSE estimator we have

lim
S→+∞

fG−MMSE

(√
Sascs + n, n

)

(16)

=







∣

∣

∣

∣

n

1+eα exp{−|n|2}

∣

∣

∣

∣

2

, as = 0

|n|2 , as = 1.

Taking the expectation, by averaging over as ∼ B(q), n ∼
CN (0, 1), and using Lemma 1, we obtain

lim
S→+∞

S ·MSEG−MMSE(S) = q + (1− q)g(q̃), (17)

where we have defined

g(q̃) = E







∣

∣

∣

∣

∣

∣

n

1 + eα exp
{

− |n|2
}

∣

∣

∣

∣

∣

∣

2





= − q̃

1− q̃
ln q̃. (18)

Similarly, for the G-Thres estimator, in the high SNR region

(S → +∞) we have

lim
S→+∞

fG−Thres

(√
Sascs + n, n

)

(19)

=

{

|n|2 as = 1

I
(

|n|2 ≥ α
)

|n|2 , as = 0.

Taking the expectation, by averaging over as ∼ B(q), n ∼
CN (0, 1), using Lemma 1 we obtain

lim
S→+∞

S ·MSEG−Thres(S) = q + (1− q)w(q̃), (20)

where we have defined

w(q̃) =

{

q̃
1−q̃

(

1 + ln 1−q̃
q̃

)

q̃ < 1
2

1 q̃ ≥ 1
2 .

(21)

This result can be interpreted as follows. When as(k) = 1
(with probability q), the active sparse component is detected

with no error, since the sparse coefficient can be clearly

distinguished from the noise, and the sparse coefficient is

estimated with the same accuracy as LS. When as(k) = 0
(with probability 1−q), a mis-detection error MSELS(S)g(q̃)
or MSELS(S)w(q̃) (in the MSE sense) is incurred due to

strong noise peaks, which may be mis-detected as active sparse

components.



B. High SNR, with diffuse component

When Pd > 0, in the high SNR region, for both the G-

MMSE and G-Thres estimators we obtain

lim
S→+∞

fG−MMSE

(√
Sh+ n, n

)

= lim
S→+∞

fG−Thres

(√
Sh+ n, n

)

= |n|2 . (22)

From Lemma 1, the high SNR MSE asymptotic behavior is

given by

lim
S→+∞

S ·MSEG−MMSE(S) (23)

= lim
S→+∞

S ·MSEG−Thres(S) = E

[

|n|2
]

= 1.

Therefore, the G-MMSE and G-Thres estimators achieve the

same accuracy as LS in the high SNR with diffuse component.

This result is a consequence of the fact that, in the high

SNR, the HSD channel is much stronger than the noise,

and the overall channel exhibits a dense structure, hence an

unconstrained estimator achieves the best estimation accuracy.

C. Low SNR

In the low SNR, we have











limS→0 fG−MMSE

(√
Sh+ n, n

)

=

∣

∣

∣

∣

n

1+eα exp{−|n|2}

∣

∣

∣

∣

2

limS→0 fG−Thres

(√
Sh+ n, n

)

= I
(

|n|2 ≥ α
)

|n|2.

From Lemma 1, we finally obtain the following low SNR

asymptotic behavior of the MSE

{

limS→0 S ·MSEG−MMSE(S) = g(q̃)
limS→0 S ·MSEG−Thres(S) = w(q̃),

(24)

where functions g(q̃) and w(q̃) are defined in (18) and (21),

respectively.

D. Summary

The asymptotic MSE behavior of the G-MMSE and G-Thres

estimators is summarized in Table II, and plotted in Figure 1.

In particular, we compare their limiting behavior with the

LS estimator, and with an oracle estimator, which assumes

perfect knowledge of the sparsity pattern as and hence per-

forms a LS estimate of the active sparse components as ⊙ cs,

and a MMSE estimate of hd. By averaging over the channel

TABLE II
ASYMPTOTIC MSE BEHAVIOR OF LS, ORACLE, G-MMSE AND G-THRES

ESTIMATORS

MSE(S)
MSELS(S)

High SNR, Λd = 0 High SNR, Λd ≻ 0 Low SNR

LS 1 1 1

Oracle q 1 q

G-MMSE q + (1− q)g(q̃) 1 g(q̃)

G-Thres q + (1− q)w(q̃) 1 w(q̃)

realizations of the HSD model, its MSE as a function of the

SNR S is given by

MSEOracle (S) = q
L

S
+ (1− q)

L−1
∑

k=0

Pd(k)

1 + SPd(k)
. (25)

Notice that g(q̃) and w(q̃) are increasing functions of q̃,

with g(q̃) ≤ 1, w(q̃) ≤ 1, limq̃→1 g(q̃) = limq̃→1 w(q̃) = 1,
limq̃→0 g(q̃) = limq̃→0 w(q̃) = 0. Therefore, in the high SNR

with no diffuse component and in the low SNR, the G-MMSE

and G-Thres estimators perform better than the LS estimator.

Moreover, the smaller q̃, the better the MSE accuracy. This

proves that, from the perspective of minimizing the MSE, it

is beneficial to use a conservative approach in the estimation

of the sparse component. In particular, using q̃ < q improves

the estimation accuracy with respect to using the true value of

the sparsity level q.

Notice that this behavior may not hold for medium SNR,

where in fact a smaller q̃ may induce a larger MSE. This can

be observed by studying the two extreme cases q̃ = 1 and

q̃ = 0. When q̃ = 1, the channel, from the perspective of the

estimator, is modeled as h = cs + hd, hence the G-MMSE

and the G-Thres estimators are equivalent to LS. On the other

hand, when q̃ = 0, the channel is modeled as h = hd, and the

two estimators are equivalent to the MMSE estimator of the

diffuse component, with MSE

MSEdiff (S) =

L−1
∑

k=0

E

[

∣

∣

∣
ĥdiff (k)− h(k)

∣

∣

∣

2
]

(26)

=

L−1
∑

k=0

(

q
Ps(k)

(1 + SPd(k))
2 +

Pd(k)

1 + SPd(k)

)

.

Clearly, this estimator performs worse than LS

(MSEdiff (S) > MSELS(S)), for any value of the SNR

S, for sufficiently large values of Ps(k), k = 0, . . . , L − 1.
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.



Therefore, although representing the most conservative

approach, the choice q̃ = 0 may attain poor performance for

medium SNR.

It is worth noticing that, while a conservative approach

(q̃ < q) is often beneficial for the G-MMSE and the G-

Thres estimators, when cs ∼ CN (0,Λs) the MSE of the

MMSE estimator in Section IV-B is minimized by using the

true sparsity level q (in fact the posterior mean minimizes the

MSE). Therefore, this result can be explained with the fact

that a conservative approach in the estimation of the sparse

component compensates for the uncertainty on the sparse

coefficient vector cs, which is treated as a deterministic and

unknown vector, hence attaining a better MSE accuracy.

Finally, it can be shown that g(q̃) ≤ w(q̃), and therefore

the G-MMSE estimator outperforms the G-Thres estimator. In

fact, the MMSE estimate of the sparsity pattern represents a

soft decision of as, and therefore expresses also the reliability

associated with the detection of an active sparse component.

On the other hand, the MAP estimator provides a hard estimate

of as, which completely discards the information about its

reliability.

VI. NON-ORTHOGONAL PILOT SEQUENCES

So far, we have used the assumption of orthogonal pilot

sequence. As a consequence, a per-tap estimation approach is

optimal, since the entries of the noise vector
√
S
−1

n and of

the observed sequence hLS are statistically independent.

Herein, we discuss the scenario where a non-orthogonal

pilot sequence is employed. In this case, we have

hLS = h+
√
S
−1

n, (27)

where we have defined the SNR matrix S = X
∗
X

σ2
w

. While in

the orthogonal case S is diagonal, thus decoupling the entries

of the observed sequence, in the non-orthogonal case it has

non-zero off-diagonal components.

In this case, a per-tap estimation approach, by discarding the

noise correlation structure over the channel delay dimension,

is sub-optimal and incurs a performance loss, which can be

characterized as an effective SNR loss (see, e.g., [13]).

In order to exploit the noise correlation structure, we need

to design joint estimation techniques. To this end, we now

explore the connection between the G-Thres estimator and

classical sparse approximation algorithms [14], [15].

Letting hs = as ⊙ cs, the G-Thres estimator solves
{

ĉs, âs, ĥd

}

= arg max
cs,as,hd

p (hLS ,as,hd|cs)

= arg min
hs=as⊙cs,hd

(hLS − hs − hd)
∗
S (hLS − hs − hd)

+ α ‖hs‖0 + h∗
dΛ

−1
d hd. (28)

This problem can be viewed as a LS regression problem,

with an L0 regularization term associated with hs (‖hs‖0 =
∑L−1

k=0 I (|hs(k)| > 0)), enforcing sparseness of the solution,

and an L2 regularization term associated with hd, enforcing

the Gaussian nature of the diffuse component.

The solution of (28) with respect to hd first, as a function

of hs, gives the MMSE estimator

ĥd (hs) = ΛdΣ
−1
d+n (hLS − hs) , (29)

where we have defined Σd+n = Λd + S−1. By substituting

this solution into the cost function, we obtain

ĥs=arg min
hs∈CL

(hLS−hs)
∗
Σ−1

d+n(hLS−hs)+α ‖hs‖0 . (30)

This can be viewed as a LS regression problem, with an L0

term associated with hs, where hd is treated as noise.

The optimal solution of the above problem requires a

combinatorial search over all the possible realizations of the

sparsity pattern as. Otherwise, we need to recur to numerical

algorithms, which have been extensively researched in the

literature. An equivalent problem is addressed in [14], namely

ĥs = arg min
hs∈CL

‖w − Φhs‖22 + λ ‖hs‖0 , (31)

where w is a noisy version of Φhs, and Φ is known, with

IL − Φ∗Φ ≻ 0. Equation (30) is equivalent to (31) by letting

w =
√
ρΣ

− 1
2

d+nhLS , Φ =
√
ρΣ

− 1
2

d+n, and λ = ρα, where

ρ > 0 is chosen so as to guarantee IL − Φ∗Φ ≻ 0. The
Iterative Thresholding Algorithm proposed in [14] may then be

used to estimate hs, and equation (29) to estimate the diffuse

component hd, after convergence of the iterative algorithm.

Alternatively, we may relax the L0 cost associated with hs,

and use a L1 regularization term instead [15], thus giving

ĥs=arg min
hs∈CL

(hLS−hs)
∗
Σ−1

d+n(hLS−hs)+α ‖hs‖1 , (32)

where ‖hs‖1 =
∑L−1

k=0 |hs(k)|.

VII. SIMULATION RESULTS

In this section, we present the simulation results, and eval-

uate the performance achievable with the proposed estimators,

from both a MSE and a BER perspective.

In particular, for the simulations we generate the HSD

channel h ∈ C
L according to Section II-B, with delay spread

L = 50, sparsity level q = 0.1, exponential PDP of the diffuse

component Pd(k) = βe−ωk, with β = 0.01, ω = 0.1, and
PDP of the sparse coefficients Ps(k) = e−ωk. The sparse

coefficients are drawn as cs(k) ∼ CN (0,Ps(k)).
We consider the unstructured LS estimator (scenario S1 in

Table I), the G-MMSE and G-Thres estimators, for different

values of the assumed sparsity level q̃ ∈ {0.1, 0.01, 0.001}
(Scenarios S2 and S3 in Table I) and the MMSE estima-

tor (scenario S4 in Table I). The latter, by minimizing the

MSE, represents a bound to the estimation accuracy, hence

it is primarily used as a reference for the other estimators.

Moreover, we also consider a Sparse estimator, which neglects

the contribution from the diffuse component (in particular,

we use a variation of the G-Thres estimator which assumes

Pd(k) = 0, ∀k), and a Diffuse estimator, which, on the other

hand, neglects the sparse component (in particular, it is the

limit case of the G-MMSE or G-Thres estimators with q̃ = 0).
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In Figure 2, we plot the MSE of the G-MMSE and G-Thres

estimators as a function of the estimation SNR S, for different

values of the assumed sparsity level q̃, and their asymptotic

MSE behavior (bold lines, with the corresponding markers

for the different values of q̃). We notice that there is a perfect

match between the MSE in the high and low SNR ranges, and

the asymptotic behavior developed in Section V. In particular,

the results confirm that it is beneficial to use a conservative

approach in the estimation of the sparse component. Also, as

predicted by the MSE analysis, the G-MMSE estimator out-

performs the G-Thres estimator, in the asymptotic regimes. To

some extent, this behavior is observed also in the medium SNR

range. However, this is not true in general: in fact, the Diffuse

estimator in Figure 3, which is equivalent to G-MMSE/G-

Thres with q̃ = 0, represents the most conservative approach

in the estimation of the sparse component; nevertheless, it

performs worse than LS for medium SNR.

In Figure 3, we compare the MSE of the G-Thres, Sparse

and Diffuse estimators, assuming the sparsity level q̃ = 0.001.
We notice that both the Sparse and the Diffuse estimators incur

a performance loss in the medium SNR range, due to the fact

that either the diffuse or the sparse component is neglected.

In Figure 4, we plot the BER induced by channel estimation

errors. In particular, for the BER computation, we consider an

OFDM system, employing Ndft = 256 sub-carriers and a 4-

QAM constellation. Since we are interested in evaluating how

estimation errors affect the BER performance, we consider a

scenario where noise is added in the estimation phase, so as

to induce channel estimation errors, while noise is not added

to the information symbols. We notice that the G-MMSE

estimator with q̃ = 0.001 performs very closely to the lower

bound, represented by the BER of the MMSE estimator. On

the other hand, both the Sparse and the Diffuse estimators

incur a performance loss, due to their inability to exploit the

sparse and the diffuse components jointly, and suffer from poor
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performance for medium and high SNR, attaining a larger BER

than LS. This result is in line with the behavior observed in

the MSE case.

Finally, in Figure 5 we present the results (mean squared

prediction error of the observed sequence) of the evaluation

of the proposed estimation strategies based on the SPACE08

experimental data set. The channel is estimated from a single

snapshot. In particular, the exponential PDP Pd(·) (which

is unknown a priori) is estimated using the Expectation-

Maximization algorithm designed in our related work [12].

Despite the fact that the experimental data do not obey the

HSD model exactly, we observe that the G-MMSE estimator

(with q̃ = 0.001) outperforms both the unstructured LS esti-

mator, and the purely Sparse estimator. We refer the interested

reader to [16] for further details on the experimental setup and

on the results.
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VIII. CONCLUSIONS

In this paper, following [11], we have proposed a novel

Hybrid Sparse/Diffuse (HSD) model for the UWA channel,

which employs a sparse component to model the resolvable

MPCs, arising from scattering phenomena and reflections in

the environment, and a diffuse component to model further

propagation phenomena, e.g., unresolvable MPCs, scattering

from rough surfaces, frequency dispersion. Based on the

analysis of the spatio-temporal evolution of the UWA channel,

we have identified four different scenarios, which differ in the

amount of side information available at the receiver. Hence,

we have proposed estimators based on the HSD model.

Of particular interest are the G-MMSE and the G-Thres

estimators, which have been designed for the scenario where

the sparse coefficients are treated as deterministic unknown

parameters, and the PDP of the diffuse component is known

at the receiver. This is relevant when the observation interval

is large enough to allow averaging over the small scale fading,

but not over the large scale fading. We have developed a MSE

analysis of these estimators, showing that a conservative ap-

proach in the estimation of the sparse component is beneficial

from a MSE perspective, in the high and low SNR regions.

Finally, we have presented simulation results, based on the

HSD model, and an evaluation of the proposed techniques

based on the SPACE08 experimental data set, which is pre-

sented in detail in our previous work [16]. These results show

that estimators based on the HSD model considerably improve

the MSE and the BER performance over the conventional

unstructured Least Squares estimator, and over Sparse and

Diffuse estimators, which neglect either the diffuse or the

sparse component of the channel. Moreover, we have shown

a perfect match between the MSE analysis and the simulation

results, which confirms our conjecture that a conservative

approach in the estimation of the sparse component is often

beneficial, from both a MSE and a BER perspective.
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