On the Performance of Unsynchronized Distributed MAC Protocols in Deep Water Acoustic Networks Federico Favaro*, Saiful Azad*, Paolo Casari*[§], Michele Zorzi*[§] *Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova, Italy [§]Consorzio Ferrara Ricerche, via Saragat 1, 44122 Ferrara, Italy {favarofe,azad,casarip,zorzi} @ dei.unipd.it

Objectives

To compare MAC protocols employing asynchronous channel access in deep water networks

• Throughput • Packet delivery ratio

To compare the results against those obtained in a shallow water scenario and understand if a sort of «winner» can be identified among the considered schemes

Results at a glance

Three random access MAC schemes

- CSMA-ALOHA (short channel sensing)
- DACAP (RTS/CTS + warning)
- Tone-Lohi (transmitter-driven tone-based contention)

CSMA-ALOHA performs better

- Higher throughput because of more persistent access attempts
- The performance of DACAP and Tone-Lohi is unfavorably affected by the duration of the handshakes

Scenarios

Deep water scenario: location, SSP from WOD 2009 and attenuation from Bellhop (5 kHz, "incoherent" mode, darker = stronger signal)

Shallow water scenario: location, SSP from WOD 2009 and attenuation from Bellhop (11.5 kHz, "incoherent" mode, darker = stronger signal)

Protocols

CSMA-ALOHA

Sense the channel for a short, random time (much less than τ_{prop}), transmit if the channel is clear, otherwise repeat sensing until the channel is found free

DACAP

Transmit RTS, wait for CTS, defer DATA transmission to detect ongoing handshakes, back off (or warn the transmitter to back off) if a likely collision is detected.

Tone-Lohi (aggressive version)

Transmit tone and contend, i.e., wait one τ_{prop} , transmit data if no other tone is heard; otherwise back off and repeat the tone transmission, or drop out of another tone is received

Results

Conclusion: CSMA-ALOHA wins over more complicated asynchronous access schemes in the considered scenarios (main reasons: delay and interference)

This work was supported, in part, by Johns Hopkins University, Applied Physics Laboratory's internal research and development funds.