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ABSTRACT

In this paper, we analyze the predictability of the communica-
tions performance of an adaptive modulation system for underwa-
ter acoustic communications. As a case study, we consider the
KAM11 data set, which has been collected off the coast of Kauai
Island during July 2011. We measure the signal to noise ratio at
the output of the equalizer and we observe slow fluctuations over
time intervals of up to six minutes. Based on an analytical model
and using the estimated time correlation coefficient of subsequent
values of the signal to noise ratio (SNR), we compute the commu-
nications performance as a function of the feedback delay for an
adaptive modulation system, and we evaluate its predictability. We
show that it is possible to know in advance the trend of the perfor-
mance over intervals of three to four minutes.

Categories and Subject Descriptors

C.2.0 [Communication/Networking and Information Technol-

ogy]: General—Data communications; I.6.6 [Simulation andMod-

eling]: Simulation Output Analysis

General Terms

Measurement, Performance

Keywords

Underwater acoustic communications, predictability, simulation

1. INTRODUCTION
In this paper, we study the predictability of the communications

performance of an adaptive modulation scheme in the underwater
acoustic scenario. We analyze the KAM11 data set, collected dur-
ing July 2011 off the coast of Kauai Island, in order to evaluate time
fluctuations. Specifically, we estimate the time series of the SNR
computed at the output of the equalizer and averaged over a packet,
which indicates the average communication quality seen by the up-
per layers. These time series last six minutes, and are evaluated
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over periods two hours apart. Finally we show the predictability,
by using the estimated time fluctuations to set the parameters of the
analytical model presented in [1], and we evaluate outage proba-
bility and throughput as functions of the lag between the feedback
and the current Channel State Information (CSI).

The rationale behind this work is that by assessing the predictabil-
ity of the "quality" of the communications channel and the result-
ing performance of underwater communications systems, we can
determine the classes of feedback and adaptive communications
techniques that are most suitable for a given underwater environ-
ment. The time scales of interest (several seconds to a few minutes)
are very relevant to the performance of adaptive communications
schemes and network protocols requiring control signaling.

Assessing the most appropriate techniques for providing and ex-
ploiting feedback is particularly important for the many half-duplex
underwater acoustic communications systems such as those in [2]
and [3]. In such systems, the use of feedback both reduces the ca-
pacity of the link and increases energy consumption. Nevertheless
feedback (or control messages) is necessary to many communica-
tion techniques, such as Adaptive Modulation and Coding (AMC),
power control, Automatic Repeat reQuest (ARQ), and to network-
ing protocols. Therefore, unlike for the wireless terrestrial counter-
part, not affected by the same restrictive constraints, it is important
to assess the possibility of reducing the amount of feedback, with-
out losing the advantages of more complex techniques.

In contrast to the study in [4], we focus on the predictability
of the communications performance (output SNR), rather than of
the channel impulse response. Measures of communications per-
formance such as output SNR are more practical to send over an
acoustic feedback channel and are more important when determin-
ing the next transmission parameters in an AMC context. In addi-
tion, we focus on performance averaged over the length of trans-
mission packets because techniques like AMC are driven by con-
ditions that change over inter-packet intervals. In [5], the authors
provide a study on the predictability of the SNR computed on the
received signal, which will be called input SNR later on, for the
closed loop power control technique. As we will show in the fol-
lowing, for single carrier wide-band modulation schemes, such as
that considered in [5], closed loop power control may not be as
effective as it is commonly thought. Moreover, our work differs
from the work in [5], in the considered environment and in the ob-
served metric: in fact, even if assessing the predictability of the
input SNR or of the output SNR is qualitatively equivalent, quanti-
tatively it is not. The authors of [6] performed the first study taking
into account outdated CSI, but they did not study the possibility of
decreasing the feedback rate. Moreover, none of the studies on un-
derwater network protocols, such as [7], [8], [9], [10] and [11] deals



with or takes advantage of time correlated channel conditions. In-
deed, differently from the terrestrial radio communications, where
the transmission rates and propagation delays are negligible with
respect to the time-varying channel conditions in a stationary sce-
nario, the underwater case is more heavily affected by environmen-
tal changes of the order of several seconds, so that these effects
should be considered when optimizing or designing new network-
ing protocols. This approach appears, for the first time, in [12],
where the authors observe via simulation that changes in the sound
speed profile conditions affect the performance of MAC and rout-
ing protocols. Nevertheless, they do not study the predictability of
such varying conditions, but they rather suggest to use more control
messages.
AMC techniques aim at maximizing the spectral efficiency, by

taking advantage of the known CSI. Such spectral efficiency is up-
per bounded by the system capacity. As far as the authors’ knowl-
edge, the problem of determining the capacity of a frequency selec-
tive system with feedback delay and outdated CSI remains an open
problem, even though it has been intensively studied (for example
in [13], [14] and [15]) from an information theoretic point of view.
Therefore, for the reasons discussed so far, in this paper we study

the predictability of the communications performance over a link,
by focusing on the AM context, and we provide some evidence on
the order of time-fluctuations over intervals six minutes long, which
is of interest for a large number of networking protocols and appli-
cations, by using experimental data. The results presented here are
computed over a subset of the KAM11 data, described below. The
examined subset refers to 62 percent of the total collected epochs
from Julian date 185 to 190, and the observations here hold for
53 percent of that data subset. The remaining 47 percent of the
processed data presents bad channel conditions, which limited the
equalizer performance, thus leading to inaccurate results. In ad-
dition, as a next step, the environmental data will be processed, so
that an evaluation of what factors are contributing to the poor equal-
izer performance will become clearer. Given that our main scope
is the use of feedback to adapt transmission parameters, we focus
only on the part of the data characterized by good channel condi-
tions. A more complete description of the collected data set, that
was designed for the objectives described previously, can be found
in Section 2, whereas the system model is presented in Section 3
and the results and conclusions are in Section 4 and 5, respectively.

2. EXPERIMENTAL DATA SET
In this section, we describe the considered experimental scenario

and we show a first evaluation of the measured channel character-
istics.

2.1 Scenario
The KAM11 data set has been collected in 2011 during Julian

dates from 171 to 191, off the coast of Kauai Island. In this pa-
per, we analyze the subset of data transmitted and recorded by the
WHOI Autonomous System, from Julian date 185 to 190, during
which our specific signal was transmitted. The scenario was sta-
tionary: the source and the receiver were 3 km apart and posi-
tioned at 45 m below the ocean surface. The receiver used sig-
nals received at a 24 element vertical and linear hydrophone array
with 5 cm spacing between hydrophones. The equalizer used to
generate the results shown here utilized signals from 4 of the hy-
drophones spaced by 15 cm. The central frequency and bandwidth
of the omni-directional source were 13 kHz and 8 kHz, respec-
tively.
Conductivity, temperature and depth (CTD) data have been col-

lected during the experiments, and we can observe in Figure 1 the
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Figure 1: Sound Speed Profile collected on Julian date 176 off

the coast of Kauai Island.

Sound Speed Profile (SSP) estimated from one such CTDmeasure-
ment. We can assume that the whole area is characterized by the
same SSP, even though the thermocline, which in Figure 1 is around
70 m below the surface, might slightly change due to the propaga-
tion of internal waves. The SSP is down-refractive from the surface
to 15 m, from where it becomes up-refractive up to 60 m and it
ends as down-refractive again. This particular combination of up
and down-refractive parts in the water column gives rise to different
propagation paths, which are very sensitive even to a slight change
of the SSP in time. From the data collected by a thermistor chain, it
is possible to follow those time fluctuations and correlate them with
the variations observed in the channel impulse responses. This data
analysis and a ray-tracer simulation are part of future investigations
and will help in understanding the effects of this type of SSP on the
communication performance.

The source transmits six sound files every two hours. Each file
consists of an initial period of silence, a train of 31 packets, sep-
arated in time by 280ms in order to avoid interference between
contiguous packets, and a couple of longer packets which will not
be analyzed in this study. Overall, the file lasts one minute (includ-
ing also silence), and in this study we will focus on the 31 data
packets, each containing 6500 modulation symbols, transmitted at
6250 symb/s. This data set allows us to study the time variabil-
ity of the communications performance in different environmental
conditions. In particular, we can analyze how much environmental
conditions such as surface roughness, internal waves, temperature
gradients and wind speed, affect the propagation and the received
signal quality.

2.2 Channel impulse response
During the experiments, the BPSK and QPSK modulated data

were preceded by a sequence of Linear FrequencyModulated (LFM)
pulses, transmitted in order to have a first raw estimate of the chan-
nel impulse response. In this section, we show the results relative to
the LFM pulses, by choosing a couple of representative samples of
the extensive subset analyzed. We will focus in particular on date
187 at different hours.

Figures 2 and 3 represent the pseudocolor of the amplitude of
the channel impulse responses obtained by processing LFM pulses.
The y-axis is the observation time in minutes, and the x-axis is



Figure 2: Pseudocolor of the time series of the estimated ampli-

tude of the channel impulse response. Date 187 at 4 am, when

the receiver has good performance.

the delay of the channel arrivals in milliseconds. As mentioned
in the Introduction, the receiver works in the acceptable regime of
SNR (from a few dB up) only on a part of the whole processed
data set. Here we show the conditions of the channel when the
receiver works and when it does not, and we highlight the channel
characteristics that make the difference.
For example, in Figure 2, we observe a strong consistent arrival,

which can be used for synchronization, and even if its amplitude
changes over time, it is the stablest and the strongest of all ar-
rivals. On the other hand, the channel conditions represented in
Figure 3 are more rapidly varying, so that it is harder to identify a
stable arrival throughout the time series. These conditions give rise
to synchronization problems, thus resulting in very poor decoding
performance.
From the measured channel impulse response, we can estimate

some channel parameters such as delay and Doppler spread, in or-
der to define the context of our case study. For now we do not
evaluate quantitatively such channel parameters, but by observing
Figures 2 and 3 we can assess that the channel can be doubly selec-
tive, both in time and in frequency, and it has time-varying degrees
of selectivity. For example the channel depicted in Figure 2 can be
defined as slow time-varying and frequency selective, whereas the
channel in Figure 3 is fast time-varying and frequency selective.
From now on, we will focus on those recorded signals that were
affected by channel impulse responses similar to those shown in
Figure 2.

3. SYSTEMMODELANDPERFORMANCE
In this section, we describe the communication system under

analysis. For the moment, we consider only an adaptive modu-
lation (AM) scheme with no channel coding, since our focus is
more on understanding the effects of correlated time fluctuations
on this technique, rather than designing a new adaptive scheme. In
any event, the extension to the AMC case would be straightforward
and would not give much different results. According to the AM
technique, the transmitter can change the constellation size based
on the CSI fed back by the receiver. This mechanism improves
the spectral efficiency of the communication system, by taking ad-
vantage of the knowledge of changing channel conditions. On the

Figure 3: Pseudocolor of the time series of the estimated ampli-

tude of the channel impulse response. Date 187 at 8 am, when

the receiver cannot decode.
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Figure 4: System model. The SNR, γ(t − 1), is estimated af-

ter the equalizer and is fed back to the receiver. The symbol
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receiver elements.

other hand, CSI may reach the transmitter after some propagation
and decoding delay, thus becoming outdated.

3.1 System model
Figure 4 represents the considered Single Input Multiple Output

(SIMO) system model. Modulation symbols, a(n), are transmitted
over the channel, c(t, τ), which introduces distortion, and they are
received with additive noise w(t) at the receiver side at different
depths. At the receiver side, after synchronization, the received
signals are re-sampled, combined, and processed by a Decision
Feedback Equalizer (DFE). Then, the output symbol SNR, γ, is
estimated from the software decision at the output of the equalizer,
s̃(n), and is then fed back. The transmitter, based on a predefined
Quality of Service (QoS) requirement, decides for the largest con-
stellation size which assures such QoS. In our case, we consider
constant modulus constellations, such as M Phase Shift Keying
(M -PSK), with M ∈ {2, 4, 8}, and we choose as QoS the max-
imum Bit Error Rate (BER), here 10−3, for the transmitted bit
stream. We compute the BER as a function of the average sym-
bol SNR γ, by assuming that the received s̃(n), inside a packet, is
affected by only AWGN, so that we can use the following equa-
tions [16]:

Pb(M ; γ) =
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(1)

Given a maximum BER, we compute the set of threshold SNRs,
which are associated to each constellation sizeM .



We express the software decision as

s̃(n) = c̃(0)a(n) + w̃(n), (2)

where c̃(0) is the residual channel coefficient after equalization and
w̃ is the residual additive noise, which includes noise and residual
ISI. We assume that c̃(0) is constant over a packet but varies slowly
across different packets (we saw in Section 2 that this assumption
holds).
From Equation (2) we define the average output SNR as

γ =
|c̃(0)|2Es

σ2
, (3)

where Es is the energy of the modulation symbol and σ2 is the
variance of the residual noise w̃. Given that we consider constant
modulus constellations, Es is one for every symbol. We estimate
the residual channel coefficient for each packet as the average of the
software decision divided by the corresponding transmitted signal,
so that it does not depend on the specific transmitted symbol. Then,
we can write the residual coefficient as:

c̃(0) = E

[ s̃(n)

a(n)

]

. (4)

Given that w is a zero-mean process, this estimator is unbiased.
Finally, we estimate σ2 as:

σ2 = E[|s̃(n)− c̃(0)a(n)|2]. (5)

We can interpret c̃(0) as the average residual channel coefficient
over a packet, and σ2 as the corresponding mean square error.
In the adaptive modulation context, we are interested in evalu-

ating the changes of channel conditions over consecutive packets,
in order to assess whether or not the fed back information is suf-
ficient, if not outdated, to get the expected performance improve-
ment. Specifically, we focus on the fluctuations of the output SNR
in Equation (3), which is proportional to the squared amplitude of
the average residual channel coefficient and is a measure of the re-
ceived signal quality seen by the upper layers in the protocol stack.
Given that we are observing an average output SNR, and given that
the transmitter and receiver are stationary, we do not expect rapid
fluctuations, but given that both the feedback delay and the process-
ing time at the receiver are of the order of seconds, we do expect
changes in the channel state over this time scale, as observed in
Section 2.2.
We characterize the amplitude of the residual channel coefficient

as a Nakagami random variable fully described by its second order
statistics and with the following probability density function:

f(x) =
2mm

Γ(m)cm
x2m−1 exp

(

− m

c
x2
)

, (6)

where x = |c̃(0)|. By substituting the variable x2/σ2 = γ, we get
the probability density function for the output SNR,γ:

f(γ) =
mm

Γ(m)γm γm−1 exp
(

− m

c
γ
)

. (7)

We choose this model because, thanks to the parameterm, it makes
it possible to consider different fading shapes (from Rayleigh to
Rice), and given that the distribution is completely defined by its
second order statistics, it can be easily estimated from the time se-
ries. We then assume that two consecutive SNR samples, separated
by a time interval τ , γ and γτ , are Nakagami correlated random
variables, described by the following conditioned probability den-

sity function:

f (γτ |γ) =
m

(1− ρ (τ))γ

(

γτ
ρ (τ) γ

)(m−1)/2

× Im−1

(

2m
√

ρ (τ) γγτ

(1− ρ (τ))γ

)

exp

(

m(ρ (τ) γ + γτ )

(1− ρ (τ))γ

)

,

(8)

where ρ (τ) is the correlation coefficient between γτ and γ, and
Im−1 (·) is the modified Bessel function of the first kind and of
order m − 1. This correlated model has been proposed initially
in [1].

3.2 Communications Performance: outage pro-
bability and throughput

Here, we present a derivation of the communications perfor-
mance for the AM system. In particular, we focus on outage proba-
bility and average throughput as functions of feedback delay. The
outage probability is a measure of how likely the event of not satis-
fying the QoS is, when using the constellation size associated to the
fed back SNR value, γ. The average throughput is the mean amount
of information per unit of time that is correctly received, and rep-
resents the tradeoff between high spectral efficiency and unreliable
transmission.

We compute the outage probability, given a fed back γ, as the
probability that γτ is less than the SNR threshold T (γ), i.e., the in-
ferior extreme of the SNR region associated to γ, which in symbol
is

P (γτ |γ) =
∫ T (γ)

0

f(γτ |γ)dγτ . (9)

This conditional probability can be averaged over all the possible
values for γ, including the case in which γ is less than the minimum
average symbol SNR assuring the QoS, which will be indicated as
T1. This outage probability is

P (τ) =

∫ +∞

T1

f(γ)

∫ T (γ)

0

f(γτ |γ)dγτdγ +

∫ T (1)

0

f(γ)dγ .

(10)
We compute the throughput as the average amount of informa-

tion per second per Hertz, that is transmitted based on the fed back
SNR γ and is correctly received. Given γ, the transmitter chooses
the constellation sizeM(γ), for which the number of bits per sym-
bol is b(γ) = log2 (M(γ)). By assuming the usage of an inter-
leaver over the bit stream, we can compute the average throughput,
given γ, as

Θ(τ |γ) =
∫

∞

T (γ)

b(γ)(1−BER(γτ ))f(γτ |γ)dγτ , (11)

which, by considering all possible values for γ, becomes:

Θ(τ) =

∫ +∞

T1

f(γ)b(γ)

∫

∞

T (γ)

(1−BER(γτ ))f(γτ |γ)dγτdγ .

(12)
It is worth noticing that when γτ is less than the inferior extreme

of the region associated to γ, i.e., if γτ < T (γ), the throughput is
zero, because the QoS is not met.

4. RESULTS
In this section, we present the evaluation of the previous analysis

based on the KAM11 data set. We first quantify the time changes
of the average output SNR, and then we assess the predictability of
the AM system performance.
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(b) Average output SNR at Julian date 187, at 4 am.

Figure 5: Julian date 187, at 4 am.
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(a) Average input SNR at Julian date 188, at 00 am.
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(b) Average output SNR at Julian date 188, at 00 am.

Figure 6: Julian date 188, at 00 am.

4.1 Time series of the average output symbol
SNR

We show here the time series of the observed SNRs over an inter-
val of six minutes at 4 am on Julian date 187 and at 00 am on date
188. The length of the observation interval allows us to measure the
fluctuations of the SNR due to both rapid and slow environmental
changes such as surface conditions and internal waves.
In Figures 5(b) and 6(b) we plot the estimated output symbol

SNR, averaged over a packet and computed as in Equation (3),
at times 4 am and 00 am, respectively. The used parameters for
the DFE are: a feed-forward filter length of 1ms, a feedback fil-
ter length of 10ms, and we are combining the received signals at
channels 1, 4, 7 and 10, which respectively are 45.55m, 45.4m,
45.25m and 45.1m below the surface.
Over the observation interval, the SNR varies between 9 and

17 dB at 4 am, and between 4 and 12 dB at 00 am, thus confirming
the suitability of adaptive schemes that can take advantage of such
changes. Nevertheless, an outdated channel state information can
decrease the packet reliability, thus losing the advantage of adap-
tive modulation schemes. We observe a quite smooth and almost
periodic fluctuation, in both Figures 5(b) and 6(b). In fact, we can
see an increased SNR at minutes one and five in Figure 5(b), and

at minutes three and five in Figure 6(b). This behavior is suitable
for predicting the communication system performance over subse-
quent packets.

Figures 5(a) and 6(a) show the average packet input SNR, which
is computed as the ratio between the average energy of the received
packet and the in band noise power measured before the train of
packets. We observe the same fluctuations that we notice for the
output SNR, even though the input SNR varies between 24 and
30 dB in Figure 5(a) and between 7 and 17 dB in Figure 6(a). The
correlation between the input and output SNRs is more evident in
Figure 5 than in Figure 6, because for that epoch the strongest ar-
rival was not always the most stable. The gap between the input and
output SNR represents the loss due to ISI and shows how strong
the most stable arrival is relative to the other arrivals. We mea-
sure and show the input SNR, in order to test and prove that the
fluctuations observed for the output SNR were caused by the en-
vironment and not by the post-processing on the data. Given that
we observe the same almost periodical behavior for the average in-
put and output SNRs, we can conclude that those fluctuation are
environment-driven.

We can also observe that the decrease or increase rate of the in-
put and output SNR are slightly different, thus suggesting that the



relative strength of the most stable arrival to the multipaths arrivals
is not constant over time, but rather depends on the rapidly varying
not-consistent arrivals, causing ISI. Comparing Figures 5 and 6,
we can also notice that higher input SNRs, such as those in Fig-
ure 5(a), do not always correspond to an equivalent improvement
of the output SNRs. For example, we observe a gap between the
input SNRs, at dates 187 and 188 around the sixth minute, of about
16 dB, while the corresponding gap between the output SNRs is
only about 4 dB. This means that, for the system under consider-
ation (wide-band, single carrier), if we increase the transmission
power, we do not always get correspondingly better communica-
tions performance. This is why, in a frequency selective scenario,
power control and adaptive modulation techniques do not have the
same performance. In this case, power control would not improve
the system performance as much as an updated adaptive modula-
tion scheme would.
We next evaluate the system performance when these time fluc-

tuation are taken into account.

4.2 Predictability of the communications per-
formance

A process is said to be predictable in time, when it is possible
to know its value some time τ ahead. The process that we want to
be able to predict is the average AM system performance in terms
of throughput and outage probability. The analytical model, pro-
posed in Section 3, depends only on the second order statistics of
two correlated Nakagami variables, i.e., we only need to study the
correlation coefficient between γ and γτ . Moreover, linear predic-
tors are based on the second order statistics of the process that they
track, so that from this study we can also conclude whether or not
they can be a valuable class of predictors, and if so over which
time scales. In the following we assume that the output SNR is
a stationary random process, so that we can estimate the correla-
tion coefficient. The stationarity of the SNR process was verified
in [17], for the non-coherent case.
We indicate the correlation coefficient between two consecutive

SNRs, γ and γτ , separated in time by τ , as ρ (τ) and compute it as:

ρ (τ) =
Cov(γ, γτ )

√

Cov(γ)C(γτ )
, (13)

where Cov(·) is the covariance function defined as Cov(x, y) =
E[(x − mx)(y − my)] and, if the function has only one variable,
it is equivalent to computing the variance of the variable. Figure 7
shows the correlation coefficient ρ (τ) as a function of time within
the six minute observation interval. Here we present ρ (τ) at three
different hours: 2 am and 4 am on Julian date 187 and 00 am on
188. Given that for each minute we have the data for 31 packets,
and given that each packet lasts 1 s, we interpolate the data in order
to fill the gaps on the time series. For this reason we can observe
a step-like behavior in Figure 7 between each minute and the next
one. It is worth noticing that the shapes of the correlation func-
tions at hours 2 and 4 am are quite alike, i.e., there is a second local
maximum on the correlation function around the fourth minute, and
then it decreases. This observation suggests that there are slowly
changing environmental conditions which determine the shape of
such correlation functions. The third curve, referring to date 188, is
measured almost one day after the other two curves, and we can see
how the shape of the correlation function has changed. In fact for
this curve we note two other local maxima around the third minute
and the fifth minute. The cause of such behavior has not been stud-
ied yet, but as a next step we will analyze the environmental data
and propagation models, trying to explain these trends.
We now evaluate the average AM communications system per-
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formance, by applying Equations (11) and (12) and using the cor-
relation coefficients ρ (τ) evaluated from the data. In particular,
we estimate the parameter m for the Nakagami probability distri-

bution, asm = γ2

E[(γ−γ)2]
, whereas we do not compute the average

SNR γ from the data, but we assume the same one (10 dB) for
all the considered hours, in order to get comparable results, and in
order to highlight the effects on the performance of the time fluctu-
ations.

Figures 8 and 9 show the system performance as functions of the
feedback delay τ . Doubtless, a feedback delay of the order of min-
utes is not of great practical interest, but we aim at understanding
over which time interval the process can be predictable, in order to
prove that the feedback rate can be decreased. As expected, corre-
sponding to the local maxima of the correlation function, we find
local minima for the outage probability and local maxima for the
throughput. This means that if we knew the system performance
at the present time, we could expect similar performance in four
minutes as shown by the curve representing hour 2 am, and in three
and five minutes as shown by the curve representing time 00 am.
We prove here that the time behavior of an adaptive system per-
formance permits predictability, and we show how far ahead this
holds.

These results give rise to several considerations on how to take
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Figure 9: Throughput as a function of τ .

advantage of such predictability when designing communications
and networking algorithms. For what concerns adaptive modula-
tion schemes, we should be able to answer the following open ques-
tions: which feedback information about the channel state is most
effective in enhancing the performance? Is the feedback rate ad-
justable without any performance loss? Which predictors are more
suitable to indicate the next transmission parameters? For exam-
ple, so far we assumed that the previous average output SNR γ
provides sufficient information to choose the best next transmis-
sion parameters, but if we want to decrease the feedback rate, this
may no longer be the case. Indeed, as shown in Figures 8 and 9, the
information about the next time when a local maximum occurs in
the correlation coefficient can be more useful to adjust accordingly
the system parameters and it would not require the same amount of
feedback, thus saving energy and channel occupancy.
Moreover, we can also say that knowing the time between two

highly correlated instants can be very useful for networking pro-
tocols. For example, a routing protocol could take advantage of
such information by updating the routing tables accordingly or a
medium access control protocol could assign the best slot of time
to different nodes according to different local fluctuations that they
observe.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we have studied the predictability of the communi-

cations performance for an underwater acoustic scenario, based on
experimental data. The data have been collected during July 2011,
off the coast of Kauai Island. We have analyzed the data set from
a shallow water deployment and we have presented here the results
on a few representative epochs. In particular, we have focused on
the AM scheme, and we have evaluated its performance as a func-
tion of the feedback delay.
From the obtained results, we can define some guidelines for fu-

ture studies. In fact, we will evaluate the performance of different
predictors, and we will investigate which environmental conditions
are causing such fluctuations. Moreover, we will think of new so-
lutions for networking protocols, which exploit the high time cor-
relation, measured during the analyzed data set.
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