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Abstract—In this paper, we derive fundamental performance
limits of underwater (UW) networks via an analysis of the
average behavior of random deployments. In particular, we
consider an UW network that consists of a Poisson point process
of transmitters, each with a receiver at a given distance. The
link channel model accounts for path-loss, frequency-dependent
absorption, and Rayleigh fading. We evaluate the probability of a
successful transmission, defined as the probability that the signal-
to-interference-and-noise ratio at the typical receiver is greater
than a predetermined threshold, over different network and
channel realizations. We then determine the network throughput
density and the transmission capacity, defined as the maximum
throughput density such that a constraint on the success probabil-
ity is satisfied. The dependence of these metrics on the operating
frequency and other system parameters is quantified throughthe
proposed framework.

I. I NTRODUCTION

Pioneering work in the field of UW networking [1] and
later testbed deployments [2] have demonstrated that acoustic
networks are feasible in practice. The main research thrusts
in the field have so far targeted physical-layer and hardware
design, channel characterization (see [3] for a recent review),
as well as protocol design, comparison and evaluation [4]–
[6]. Only a limited number of papers have focused on the
analytical performance evaluation of UW networks and the
derivation of fundamental limits. In particular, [7] highlighted
the relationship between bandwidth and distance, and derived
the capacity of an acoustic link. This study was extended
in [8] to an UW cellular network setting with frequency reuse,
and the tradeoff between the reuse factor and the maximum
feasible user density was demonstrated. A different approach
was taken in [9]: using asymptotic arguments, the authors
showed that the amount of information that can be exchanged
by each source-destination link in an UW network goes to
zero roughly asn−1/b, wheren is the number of nodes andb
is the path-loss exponent. In the same vein, [10] considereda
multi-hop UW network with regular geometry, and showed
that nearest-neighbor routing is order-optimal if the carrier
frequency scales appropriately with the number of nodes.

In this paper, we take a different approach than in the
aforementioned work, and focus on a random UW network
with arbitrary node density. Our objective is to characterize
the performance of a typical link of given parameters, e.g.,
transmit power, frequency and transmission distance, in the
presence of both noise and interference from concurrent trans-

missions. In particular, we use a model that has been widely
employed for the analysis of wireless radio networks, accord-
ing to which the transmitters are assumed to be distributed
in space according to a Poisson point process (PPP) (see [11]
for a comprehensive overview and a list of references). Taking
into account the characteristics of the UW channel, such
as frequency-dependent absorption, fading and path-loss,we
derive an exact expression and bounds for the probability of
success of the typical link, defined as the probability that the
received signal-to-noise-and-interference-ratio (SINR) is larger
than a predetermined threshold, over different network and
channel realizations. We then obtain the network throughput
density and the transmission capacity, defined as the maximum
throughput density such that a constraint on the success
probability is satisfied. The main advantage of the proposed
approach is that it yields explicit expressions for the metrics of
interest as functions of the parameters of interest, in contrast to
asymptotic analyses, which do not provide any information on
the preconstants of the scaling laws [9], [10]. Moreover, itdoes
not rely on any particular assumptions with respect to medium
access control (MAC); the only relevant parameters are related
to the acoustic communication and the capture model.

Through numerical results obtained for typical values of
the operating frequency and the transmission power, it is
demonstrated that the throughput-maximizing frequency is2
to 4 times larger (depending on the transmission distance) than
the frequency which maximizes the link signal-to-noise-ratio
(SNR), providing up to a7-fold improvement in the respective
throughput. This is due to the frequency-dependent absorption
of the interfering signals, which allows for a denser packing
of transmissions, and is in agreement with the performance
analysis of UW networks with frequency reuse in cellular-
like topologies [8]. It is important to note here that packing
more transmissions can be achieved in a physical sense,
i.e., by deploying more nodes in a given area, but also by
allowing the nodes in an existing deployment to transmit more
frequently. In this sense, the results obtained in this paper can
act as guidelines in determining MAC protocol parameters in
practical UW networks.

II. SYSTEM MODEL AND METRIC DEFINITION

We consider an UW network that consists of an infinite
number of transmitters (TX), each with a receiver (RX) at
distanceR and random orientation. The TXs are distributed



on the plane (d = 2 dimensions) or in space (d = 3) according
to a PPPΦ = {x} of densityλ, wherex denotes the location of
the typical TX. The power of each TX isP and is considered
as constant. The channel power gain between any TX and
RX at distancer and frequencyf consists of (a) path-loss
r−ba(f)−r, where, typically,b ∈ [1, 2], and a(f) > 1 is
the absorption factor, and (b) fadingh(f), where h(f) is
assumed to be exponentially distributed with unit mean (or
√

h(f) is Rayleigh distributed1). The fading random variables
are i.i.d. across different TX-RX pairs. Moreover, we assume
the presence of noise, which is additive with a power spectral
density W (f). For generally accepted empirical functions
W (f) anda(f), the reader is referred to [7] and the references
therein. In the remainder of the paper, we consider narrowband
transmission, i.e., transmission that takes place in a “small”
bandwidth δf around the carrier frequencyfo. Within δf ,
we assume thatW (f) = W (fo), a(f) = a(fo), and h(f)
is constant and random2. In the following, the dependence of
W anda on fo is implied.

Consider the RX corresponding to the typical TX located at
x0, and assume (without loss of generality, due to the structure
of the PPP) that it is placed at the origin. For given realizations
of the PPP and the fading variables, the signal-to-interference-
and-noise-ratio seen at the RX is

SINR =
hx0

R−ba−R

Wδf/P + I
, (1)

where
I =

∑

x∈Φ\{x0}

hx‖x‖
−ba−‖x‖, (2)

andhx denotes the fading coefficient between the TX located
at x and the RX, and‖ · ‖ is the norm ofx. We define
the success probability,Ps, as the probability that the SINR
satisfies a predetermined constraintθ, i.e.,

Ps = P(SINR ≥ θ), (3)

over all possible TX topologies and fading realizations. Taking
an information-theoretic viewpoint, ifSINR ≥ θ is satisfied,
and the noise, as well as the interference (given its power)
are assumed to be Gaussian, then a rate oflog2(1 + θ)
(bits/symbol) is achievable. Similarly to the case of wireless
radio networks, we define the following metrics [11]: the
throughput density (or density of successful transmissions)
τ(λ) = λPs(λ), which captures the tradeoff between the
density of transmissions in space and the individual link
quality; and thetransmission capacity cε = λε(1−ε), i.e., the
maximum throughput density such that a constraintPs ≥ 1−ε
is satisfied, whereε expresses the stringency of the SINR
requirement, and depends on the application. Given the energy
constraints of UW nodes, as well as the large delay penalties

1The Rayleigh distribution models the medium-range shallowwater channel
accurately [12]; however, the proposed framework can also be extended to
more general distributions.

2The case of wideband transmission and frequency selective channels can
be handled by splitting the available bandwidth in sub-bands. The analysis
presented here then applies analogously to each sub-band.

associated with retransmissions, imposing a constraint onthe
success probability and deriving the respective transmission
capacity are particularly relevant to the operation of UW
networks.

In the next section we obtain exact expressions and bounds
for Ps, τ(λ) andcε.

III. E VALUATION OF THE SUCCESS PROBABILITY AND

NETWORK METRICS

In order to evaluate the success probability defined in (3),
we follow the approach outlined in [11] for the case of wireless
radio networks. The main difference is the nature of the path-
loss model of UW signal propagation, which results in a
different expression forPs.

A. Success probability

Since hx0
is exponentially distributed,Ps can be written

as [11, Eq. (9)]

Ps = exp

(

−
θRbaRWδf

P

)

LI

(

θRbaR
)

, Ps,nPs,i, (4)

whereLI(s), s > 0, is the Laplace transform of the prob-
ability density function of the interference, andPs,n, Ps,i

denote the success probabilities taking into account only noise
and interference, respectively. WhenP → ∞ (and all other
parameters are kept constant), the network is interference
limited andPs = Ps,i. SinceΦ is a PPP, it is known that [13,
Eq. (2.2), p. 292] (see also [11, Eq. (8)])

LI(s) = exp

(

−

∫ +∞

0

Eh

[

1 − e−shr−ba−r
]

λd(r)dr

)

,

(5)
where λd(r) , λcddrd−1 and cd = Vol(Bd(0, 1)) is the
volume of thed-dimensional unit ball. Ford = 2, we have
λ2(r) = 2λπr, and for d = 3, we haveλ3(r) = 4λπr2. In
the extreme case wherea = 1, i.e., there is no absorption,
LI(s) is defined as long asb > d [11]. This case corresponds
to a wireless radio network and has been well studied in the
literature [11]. In the following, we extend the analysis to
a > 1, which is pertinent to the scenario of an UW network.
SinceEh[e−sh] = (1 + s)−1, from the definition ofPs,i and
(5), we obtain

Ps,i = exp

(

−λcddθRbaR

∫ +∞

0

rd−1

rbar + θRbaR
dr

)

. (6)

The integral in the exponent has no closed-form expression,
but can be written as an infinite series, as shown in the
following proposition. We recall the definitions of the lower
incomplete Gamma functionγ(ζ, x) =

∫ x

0
tζ−1e−t dt, x ∈

R, ζ > 0, the upper incomplete Gamma functionΓ(ζ, x) =
∫ +∞

x tζ−1e−t dt, x > 0, ζ ∈ R, and the principal branch of
the Lambert functionW(x), x ≥ −e−1 [14], whereW(x) is
the unique solution ofyey = x, y ≥ −1.

Proposition 1 The success probability in the interference-
limited regime is

Ps,i = e−λcd

P

∞

n=0 An , (7)



where

A0 = R̄d +
dθRbaR

(log a)d−b
Γ(d − b, R̄ log a), (8)

An = dβnγ(d + bn,−nR̄ log a)

− dβ−n−1Γ(d − b(n + 1), (n + 1)R̄ log a), n ∈ Z
+ (9)

with
βn = (−θRbaR)−n (−n log a)−d−bn (10)

and

R̄ =
b

log a
W

(

log a

b

(

θRbaR
)1/b

)

. (11)

Proof: Denote the integral in (6) byI. Then

I =

∫ R̄

0

(θRbaR)−1rd−1

1 + rbar

θRbaR

dr +

∫ +∞

R̄

(rbar)−1rd−1

1 + θRbaR

rbar

dr,

(12)
where R̄ is such that R̄baR̄ = θRbaR or R̄e

log a

b
R̄ =

(

θRbaR
)1/b

. Applying the Lambert function to both sides of
this equation results in (11). Employing the series expansion
(1 + x)−1 =

∑+∞
i=0 (−x)n, |x| < 1, in (12), we obtain

I =

∞
∑

n=0

(−1)n
(

θRbaR
)−n−1

∫ R̄

0

rd+bn−1arndr

+
∞
∑

n=0

(

−θRbaR
)n
∫ +∞

R̄

rd−b(n+1)−1a−r(n+1)dr. (13)

From (13) and the definitions of the incomplete Gamma
functions, we obtain (7)-(10).

In the following corollary, we obtain arbitrarily tight bounds
to Ps,i, that involve only a finite number of terms in the series
in (7).

Corollary 1 The success probability in the interference lim-
ited regime is bounded as

e−λcd

P

N

n=0
An < Ps,i < e−λcd

P

N−1
n=0 An , (14)

for any even integer N > 0. Moreover

e−λcdA0 < Ps,i < e−
λcdA0

2 . (15)

Proof: For x ∈ (0, 1),

1

1 + x
=

N−1
∑

n=0

(−x)n +

+∞
∑

n=N

(−x)n.

However,
+∞
∑

n=N

(−x)n =
(−x)N

1 + x
≶ 0,

which is > 0 for N even and< 0 for N odd. Therefore, for
N even

N−1
∑

n=0

(−x)n <
1

1 + x
<

N
∑

n=0

(−x)n. (16)

From (16) and (12), we obtain (14), following the same
procedure as in the proof of Proposition 1. Eq. (15) is proved

similarly by employing the trivial bounds1/2 < 1/(1 + x) <
1, for x ∈ (0, 1).
Remarks on Proposition 1 and Corollary 1:
1. R̄ in (11) is thecritical radius, defined as the distance at
which the power from an interferer (averaged over the fading)
is equal to(θRbar)−1. Alternatively, if we ignore fading, any
interferer within a ball of this radius around the typical RXcan
cause an outage. By definition, ifθ ≥ 1, thenR̄ ≥ R, and the
equality holds forθ = 1. If θ → ∞ (high-rate transmission)
then R̄ → ∞. With respect to the dependence ofR̄ on the
absorption factor, we have that, ifa → 1, then R̄ → θ1/bR.
For a → ∞, with the application of de l’Hôpital’s rule, (11)
results in

lim
a→∞

R̄ = lim
a→∞

b

log a
W

(

log a

b
(θRbaR)1/b

)

= b lim
a→∞

aR/b(1 + R log a/b)

aR/b log a
= R, (17)

where the derivative of the Lambert function is obtained by
differentiatingW(x)eW(x) = x with respect tox.
2. Since the TX locations are obtained from a PPP,Ps,i in (6)
is equal to the probability that there are no TXs within a ball
of volume

Vd = cd

+∞
∑

n=0

An. (18)

It can be verified that, forθ > 1, Vd decreases as the
absorption factora increases. Sincea(fo) is an increasing
function offo [7], increasing the carrier frequencyfo improves
the interference-limited success probability.
3. It is interesting to point out that (6) is defined forany
positive value ofb. This is not the case for a radio network
with path-loss lawr−b, where the interference is almost surely
infinite when b ≤ d. In addition, employing Campbell’s
theorem [11], the mean interference power at the typical RX
is

E[I] = λcdd

∫ +∞

0

rd−b−1a−rdr = λcddΓ(d − b)(log a)b−d,

(19)
which is defined forb < d. Again, this is in contrast
to radio networks with path-loss lawr−b, where the mean
interference power is always infinite. The difference lies in
the presence of the absorption factora > 1, which ensures
that the contribution of the far-away interferers goes to zero
exponentially with distance. From Campbell’s theorem, we
also obtain that

E[Ifar] = λcdd

∫ +∞

R̄

rd−b−1a−rdr

= λcddΓ(d − b, R̄ log a)(log a)b−d, (20)

where Ifar is the total interference power from transmitters
located outside the ball of radius̄R around the typical RX.
Therefore, it becomes apparent that the second term in (8)
is proportional to the ratio of the average interference power
from “far” interferers to the average (over the fading) received
signal power.
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Figure 1. Ps,i vs. a (dB/km) for λ = 0.01 nodes/km3 andθ = 10 dB. The
outer bounds are obtained by settingN = 2 in (14), and the inner bounds by
settingN = 4. (b = 1.5, d = 3, R = 1 km.)

We close this section by showing that the lower bound in
(15) is tight fora → ∞ or θ → ∞.

Proposition 2 If θ → ∞, then Ps,i ∼ e−λcdR̄d

, where ∼

denotes asymptotic equality. If a → ∞, Ps,i → e−λcdRd

.

Proof: Making use of the fact thatΓ(ζ, x) ∼ xζ−1e−x

for x → ∞, we can show that, fora → ∞ or θ → ∞,

A0 ∼ R̄d

(

1 +
d

R̄ log a

)

, (21)

and
∑+∞

n=1 An → 0. From (7), we therefore have thatPs,i ∼

e−λcdR̄d

. In particular, if a → ∞, then, from (17),R̄ → R,
which concludes the proof.
Proposition 2 implies that, in the limit of a large absorption
factor, Ps,i is equal to the probability that there are no
interferers within a ball of radiusR around the typical RX.

B. Network metrics

From the definition ofτ(λ), (4), and Proposition 1, we have
that

τ(λ) = λ exp

(

−λVd −
θRbaRWδf

P

)

. (22)

Optimizing over the density of TXsλ, the optimal throughput
density is

τo =
exp

(

− θRbaRWδf
P − 1

)

Vd
, (23)

whereVd is as in (18). Similarly, from the definition of the
transmission capacity, we obtain that

cε =
− log(1 − ε) − θRbaRWδf

P

Vd
(1 − ε). (24)

Note thatcε is defined ifRbaR ≤ −P log(1 − ε)/(θWδf),
If we solve overR, we find that the maximum supportable
transmission distance givenε is

Rmax,ε =
b

log a
W

(

log a

b

(

−
P log(1 − ε)

θWδf

)1/b
)

. (25)
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Figure 2. τ(λ) vs. λ for R = 1 km. The maximum throughput is achieved
at f = 65 kHz. (P/δf = 110 dB re µPa/Hz, b = 1.5, d = 3.)

Beyond this value ofR, the performance constraint cannot be
satisfied and the transmission capacity of the network is zero.

IV. N UMERICAL RESULTS

Unless otherwise stated, we letd = 3, b = 1.5, θ = 10 dB,
R = 1 km, andP/δf = 110 dB re µPa/Hz. The absorption
factor a(fo) and the noise power spectral densityW (fo) are
specified by (3) and (6) in [7], respectively.

We first consider the interference-limited case. In Fig. 1,
Ps,i, evaluated from (6), is plotted as a function ofa for a
fixed TX densityλ = 0.01 nodes/km3. The bounds obtained
from (14) for N = 2, 4 are also plotted for comparison. It is
seen that the bounds are quite tight even for such small values
of N .

In Fig. 2, the throughput densityτ(λ) is plotted as a function
of λ for different operating frequencies at a transmission dis-
tanceR = 1 km. The shape of the curves is typical of random-
access (ALOHA) systems, i.e., for smallλ, τ(λ) increases
linearly in λ, while, for largeλ, it decreases exponentially,
and the maximum occurs at the densityλo = V −1

d . The
curve for the interference-limited system shows the achievable
throughput density whenP → ∞ for fo = 75 kHz. The
simulation results, obtained over 20000 network topologies
with 10 different fading realizations per topology, confirmthe
validity of the analysis.

In Fig. 2, the maximumτo over all values offo considered
is achieved atfo = 65 kHz. The existence of a throughput-
optimal frequency is apparent from (23): asfo (or a) increases,
the denominator decreases, i.e., the larger absorption factor
allows for a denser packing of transmissions. At the same
time, the nominator decreases, as the useful signal power also
suffers from absorption3. In Fig. 3, τo and c0.05, optimized
over the operating frequencyfo, are plotted as functions of
R. The respective optimal frequencies are shown in Fig. 4.
For comparison, we also plot the frequency which maximizes

3The increase info also results in a small decrease of the noise power
W (fo) [7], but the absorption effect dominates.
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Figure 3. τo and c0.05, optimized overf , are plotted vs.R. Imposing a
constraint1−ε = 0.95 on the success probability results in a less dense UW
network and in a throughput loss. The bounds on the throughput are obtained
by settingN = 4 in (14). (P/δf = 110 dB reµPa/Hz, b = 1.5, d = 3.)

the received SNRPa(fo)
−RR−b/(W (fo)δf) at eachR. Note

that the throughput-optimal frequency is significantly higher
for moderate transmission distances, e.g., it is 65 kHz at
R = 1 km, compared to the SNR-optimal value of 20 kHz.
The respective throughput, as seen in Fig. 2, is about 7 times
larger. As the transmission distance increases, the network be-
comes noise-limited and the gap between the different curves
narrows. AtR ≈ 3.5 km, the frequency which maximizesc0.05

is equal to the frequency which maximizes the SNR. Beyond
this value ofR, the constraint1 − ε = 0.95 on the success
probability is no longer feasible (i.e., the numerator of (24) is
negative for any value offo) and the transmission capacity of
the UW network is zero.

V. CONCLUSIONS

We proposed an analytical framework to evaluate the
throughput of UW networks, taking fully into account the
specific propagation characteristics of the UW channel, as
well as the dependence of the interference power on the TX
locations. The framework is based on a random geometric
approach, employed widely for the analysis of wireless radio
networks, according to which the TX locations are drawn
from a PPP. We obtained exact expressions and bounds to
the success probability, the throughput density and the trans-
mission capacity, as functions of salient parameters such as
the transmission distance and the carrier frequency. A key
observation from our numerical results is that, for moderate
transmission distances, boosting the carrier frequency yields a
significant throughput gain, since the benefit of the absorption
of interfering signals outweighs the loss due to the absorption
of the useful signal at the typical RX.
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