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Abstract—In this paper, we derive fundamental performance
limits of underwater (UW) networks via an analysis of the
average behavior of random deployments. In particular, we
consider an UW network that consists of a Poisson point procss
of transmitters, each with a receiver at a given distance. Ta
link channel model accounts for path-loss, frequency-depelent
absorption, and Rayleigh fading. We evaluate the probabity of a
successful transmission, defined as the probability that #signal-
to-interference-and-noise ratio at the typical receiver $ greater
than a predetermined threshold, over different network and
channel realizations. We then determine the network througput
density and the transmission capacity, defined as the maxinm
throughput density such that a constraint on the success ptmabil-
ity is satisfied. The dependence of these metrics on the opéray
frequency and other system parameters is quantified througtthe
proposed framework.

I. INTRODUCTION

uni pd. it

missions. In particular, we use a model that has been widely
employed for the analysis of wireless radio networks, acor
ing to which the transmitters are assumed to be distributed
in space according to a Poisson point process (PPP) (see [11]
for a comprehensive overview and a list of references).nigaki
into account the characteristics of the UW channel, such
as frequency-dependent absorption, fading and path-ess,
derive an exact expression and bounds for the probability of
success of the typical link, defined as the probability that t
received signal-to-noise-and-interference-ratio (S)iRarger

than a predetermined threshold, over different network and
channel realizations. We then obtain the network throughpu
density and the transmission capacity, defined as the maximu
throughput density such that a constraint on the success
probability is satisfied. The main advantage of the proposed
approach is that it yields explicit expressions for the metof

Pioneering work in the field of UW networking [1] andinterest as functions of the parameters of interest, inrashto
later testbed deployments [2] have demonstrated that Gcouasymptotic analyses, which do not provide any information o
networks are feasible in practice. The main research thrugie preconstants of the scaling laws [9], [10]. Moreovedpies
in the field have so far targeted physical-layer and hardwatet rely on any particular assumptions with respect to nmadiu
design, channel characterization (see [3] for a recenevgyi access control (MAC); the only relevant parameters areaela
as well as protocol design, comparison and evaluation [4fe-the acoustic communication and the capture model.

[6]. Only a limited number of papers have focused on the Through numerical results obtained for typical values of
analytical performance evaluation of UW networks and ththe operating frequency and the transmission power, it is

derivation of fundamental limits. In particular, [7] highhted

demonstrated that the throughput-maximizing frequency is

the relationship between bandwidth and distance, andetério 4 times larger (depending on the transmission distance) than
the capacity of an acoustic link. This study was extendede frequency which maximizes the link signal-to-noistera
in [8] to an UW cellular network setting with frequency repusg(SNR), providing up to &-fold improvement in the respective
and the tradeoff between the reuse factor and the maximtimoughput. This is due to the frequency-dependent akisarpt
feasible user density was demonstrated. A different agproaof the interfering signals, which allows for a denser pagkin
was taken in [9]: using asymptotic arguments, the authasé transmissions, and is in agreement with the performance
showed that the amount of information that can be exchangashlysis of UW networks with frequency reuse in cellular-
by each source-destination link in an UW network goes tike topologies [8]. It is important to note here that pagkin
zero roughly as.~'/%, wheren is the number of nodes arid more transmissions can be achieved in a physical sense,
is the path-loss exponent. In the same vein, [10] consideredle., by deploying more nodes in a given area, but also by
multi-hop UW network with regular geometry, and showedllowing the nodes in an existing deployment to transmitenor
that nearest-neighbor routing is order-optimal if the iearr frequently. In this sense, the results obtained in this pape
frequency scales appropriately with the number of nodes. act as guidelines in determining MAC protocol parameters in
In this paper, we take a different approach than in thgractical UW networks.
aforementioned work, and focus on a random UW network

with arbitrary node density. Our objective is to charaateri

Il. SYSTEM MODEL AND METRIC DEFINITION

the performance of a typical link of given parameters, e.g., We consider an UW network that consists of an infinite
transmit power, frequency and transmission distance, én thumber of transmitters (TX), each with a receiver (RX) at
presence of both noise and interference from concurremétradistanceR and random orientation. The TXs are distributed



on the planed = 2 dimensions) or in spacé  3) according associated with retransmissions, imposing a constrairthen

to a PPRP = {z} of density)\, wherex denotes the location of success probability and deriving the respective transamss

the typical TX. The power of each TX iB and is considered capacity are particularly relevant to the operation of UW

as constant. The channel power gain between any TX ametworks.

RX at distancer and frequencyf consists of (a) path-loss In the next section we obtain exact expressions and bounds

r~ba(f)~", where, typically,b € [1,2], anda(f) > 1is for P, 7(\) andc..

the absorption factor, and (b) fading(f), where h(f) is

assumed to be exponentially distributed with unit mean (or
h(f) is Rayleigh distributet). The fading random variables - _ )

are i.i.d. across different TX-RX pairs. Moreover, we assum N order to evaluate the success probability defined in (3),

the presence of noise, which is additive with a power specti¥€ follow the approach outlined in [11] for the case of wissle

density W (f). For generally accepted empirical functiongadio networks. The main difference is the nature of thepath

W (f) anda(f), the reader is referred to [7] and the referencd@sS model of UW signal propagation, which results in a

therein. In the remainder of the paper, we consider narragbadifferent expression foP.

transmission, i.e., transmission that takes place in a iSmaa g ccess probability

bandwidth f around the carrier frequency,. Within §f,

we assume thatV (f) = W(f,), a(f) = a(f,), and h(f)

is constant and randdmin the following, the dependence of

W anda on f, is implied. P, = exp (_
Consider the RX corresponding to the typical TX located at ~ °

Zp, and assume _(V\_/ithout loss of gen_er_ality, du(_e to the _S_trBCt%here Li(s),

of the PPP) that it is placed at the origin. For given reailires

of the PPP and the fading variables, the signal-to-interfee-

and-noise-ratio seen at the RX is

I1l. EVALUATION OF THE SUCCESS PROBABILITY AND
NETWORK METRICS

Since h,, is exponentially distributedP, can be written
as [11, Eq. (9)]
ORaW S f
P
s > 0, is the Laplace transform of the prob-
ability density function of the interference, ane ,, Ps;

denote the success probabilities taking into account owilgen
and interference, respectively. Whéh — oo (and all other

) E[ (HRbaR) = Ps,nps,ia (4)

SINR — hyoR™ba=F (1) parameters are kept constant), the network is interference
- Wef/P+1T’ limited and P, = P; ;. Since® is a PPP, it is known that [13,
Where Eq. (2.2), p. 292] (see also [11, Eq. (8)])
I= Z g ||z||~ta~ 121 2) B Y b ta
peoNizo} Lr(s) =exp ; Ey, [1 e ] Aa(r)dr |,

(5)
(r) £ Acgdr?! and c¢q = Vol(B,4(0,1)) is the
volume of thed-dimensional unit ball. Forl = 2, we have
A2(r) = 2A7r, and ford = 3, we havels(r) = 4Axr2. In
the extreme case wheke = 1, i.e., there is no absorption,

P, = P(SINR > 6), (3) ZLi(s) is defined as long &> d [11]. This case corresponds
to a wireless radio network and has been well studied in the

over all possible TX topologies and fading realizationiig |jiterature [11]. In the following, we extend the analysis to
an information-theoretic viewpoint, 8INR > ¢ is satisfied, , = 1, which is pertinent to the scenario of an UW network.
and the noise, as well as the interference (given its powgfhceR,[e—*"] = (1 + s)~!, from the definition ofP,; and
are assumed to be Gaussian, then a ratdogf(1 + ) (5) we obtain ’

(bits/symbol) is achievable. Similarly to the case of wéssd oo Jo1
radio networks, we define the following metrics [11]: the p . — oxp (_/\cdngbaR/ ridr)_ (6)
throughput density (or density of successful transmissions) o rba” +6ORbaR
T7(A) = AP;(\), which captures the tradeoff between th&he integral in the exponent has no closed-form expression,
density of transmissions in space and the individual linkut can be written as an infinite series, as shown in the
quality; and thetransmission capacity ¢. = A\.(1—¢), i.e., the following proposition. We recall the definitions of the lowe
maximum throughput density such that a constréint- 1—¢  incomplete Gamma function(¢, ) = foz -tet dt, z €
is satisfied, where: expresses the stringency of the SINRR, ¢ > 0, the upper incomplete Gamma functioii¢, z) =
requirement, and depends on the application. Given thegy'neyjoo t¢~le=t dt, 2 > 0, ¢ € R, and the principal branch of
constraints of UW nodes, as well as the large delay penalti® Lambert functionV(z), = > —e~! [14], whereW(z) is

the unique solution ofe?¥ =z, y > —1.

andh, denotes the fading coefficient between the TX locat(?/ghere Ay
at z and the RX, and|| - || is the norm ofxz. We define
the success probability?,, as the probability that the SINR
satisfies a predetermined constraini.e.,

1The Rayleigh distribution models the medium-range shail@ier channel

accurately [12]; however, the proposed framework can aks@diended to .. ce .

more general distributions. Proposition 1 The success probability in the interference-
2The case of wideband transmission and frequency seledtimanels can limited regime is

be handled by splitting the available bandwidth in sub-Barkhe analysis -

presented here then applies analogously to each sub-band. P = e Acd 2o A", (7)

)



where similarly by employing the trivial bounds/2 < 1/(1 + x) <

_4  dORa® _ 1, for z € (0,1). -
Ap = R + Wr(d — b, Rloga), (8) Remarks on Proposition 1 and Corollary 1:
1. R in (11) is thecritical radius, defined as the distance at
Ay = dBpy(d + bn, —nRlog a) which the power from an interferer (averaged over the fading

is equal to(AR’a™) 1. Alternatively, if we ignore fading, any

> +
= df—n—1T(d =b(n+1),(n+1)Rloga), n €Z" (9) jnterferer within a ball of this radius around the typical Rn

with cause an outage. By definition,df> 1, thenR > R, and the
B, = (—ORbaf)™" (—nloga)’d’b" (10) equality holds forf = 1. If & — oo (high-rate transmission)
then R — oo. With respect to the dependence Bfon the
and B b oo a b absorption factor, we have that, if — 1, then R — 6'/°R.
R=—W ( f (0R"a™) ) : (11) For a — oo, with the application of de I'Hdpital’s rule, (11)
8 results in
Proof: Denote the integral in (6) b¥. Then ; b (1oga - l/b)
im R= lim W[ ——(0Ra™)
I—/ (ORVaT)~1pd-1 dr+/+oo (rPaqr)~1pd-1 . a—c0 a—oo loga b
0 L+ 9?{:; R 1+ ﬁbarR ’ =b lim a"/(1 + Rloga/b) =R a7)
_ (12) a—oo af/bloga ’
where R is such thatRta® = ORPaR or Re"t"F =

1/b where the derivative of the Lambert function is obtained by
(6R*a™)""". Applying the Lambert function to both sides 0fd|fferent|at|ngW( )W) — ¢ with respect tar.

this equatlon results in (11). Employing the series eXgaNSis gince the TX locations are obtained from a PPR, in (6)

“+o0
(I+2)7h =355 (=), 2] <1, in (12), we obtain is equal to the probability that there are no TXs within a ball
of volume

R
T = eRb R —n—1 / ,r,d+bn—1arnd,r, +oo
Z 0 Vd = Cq Z An (18)

—+oo
+Z (—6Ra™) / pd=bnt =1 =t dr (18) |t can be verified that, fod > 1, V; decreases as the
R absorption factore increases. Since(f,) is an increasing
From (13) and the definitions of the incomplete Gammfanction of f, [7], increasing the carrier frequengy improves
functions, we obtain (7)-(10). B the interference-limited success probability.
In the following corollary, we obtain arbitrarily tight bads 3. It is interesting to point out that (6) is defined fany
to P ;, that involve only a finite number of terms in the seriepositive value ofb. This is not the case for a radio network
in (7). with path-loss law-—?, where the interference is almost surely
infinite when b < d. In addition, employing Campbell’s
Corollary 1 The success probability in the interference lim  theorem [11], the mean interference power at the typical RX
ited regime is bounded as is

N N-1 +oo
e A4 LnzoAn < P ;< @A Dnmo An 14)  E(1] = Acad / rA=b=14"dr = AcgdD(d — b)(log a)>~*,
for any even integer NV > 0. Moreover 0 (19)
e _2egdo which is defined forb < d. Again, this is in contrast
Tl < Py <eT TR (15) {0 radio networks with path-loss law", where the mean
Proof: For z € (0, 1) interference power is always infinite. The difference lias i
the presence of the absorption factor> 1, which ensures
Z Z that the contribution of the far-away interferers goes tmze
exponentially with distance. From Campbell’'s theorem, we
also obtain that
However, Yoo
+§ (—2)" = (;—T—)N <o, E[ltar] = /\cdd/R ré=t=lq="dr
n=N ! = AcqdD'(d — b, Rlog a)(loga)®=?, (20)
which is > 0 for N even and< 0 for N odd. Therefore, for . ) .
N even where I, is the total interference power from transmitters
N-1 1 N located outside the ball of radiug around the typical RX.
Z(—I)" < 112 < Z(—x)n- (16) Therefore, it becomes apparent that the second term in (8)
n=0 n=0 is proportional to the ratio of the average interference grow

From (16) and (12), we obtain (14), following the samé&om “far” interferers to the average (over the fading) lieed
procedure as in the proof of Proposition 1. Eq. (15) is provesifynal power.



1 0.04 ‘ : ;
f = 20 kHz (SNR-optimal)
— f=50kHz
0.95F 3 f = 65 kHz (throughput-optimal)
= = = 0,03 — f=75kHz ]
== . ' f = 75 kHz, interference-limited
0.9r 2 Simulation
- E
A7 o.85- = 0.02
=
0.8} =
, 0.01f
0.75F g — Exact ‘f
—o— Upper bound
i ‘ ‘ ‘ ‘ . == Lower bound ! : ‘ ‘ ‘
0'75 10 15 20 25 30 35 40 45 50 O0 01 0.2 0.3 0.4 0.5 0.6
a (dB/km) A (nodes/km)

Figure 1. P;; vs.a (dB/km) for A = 0.01 nodes/km and@ = 10 dB. The Figure 2. 7(\) vs. X for R = 1 km. The maximum throughput is achieved
outer bounds are obtained by setting= 2 in (14), and the inner bounds by at f = 65 kHz. (P/§f = 110dBre uPa/Hz, b = 1.5, d = 3.)
settingN = 4. (b=1.5,d =3, R=1 km.)

We close this section by showing that the lower bound Beyond this value oR, the performance constraint cannot be

(15) is tight fora — oo or 6 — oc. satisfied and the transmission capacity of the network is.zer
Proposition 2 If § — oo, then Ps; ~ e~ Meal’ \where ~ IV. NUMERICAL RESULTS

. . _xesRY .
denotes asymptotic equality. If a — oo, Py; — e A/, Unless otherwise stated, we lét= 3, b = 1.5, § = 10 dB,

R =1km, andP/§f = 110dBre uPa/Hz The absorption
factor a(f,) and the noise power spectral density( f,) are
) d specifie_d by (3) _and (6) i_n [71, respect_ive_ly. _

Ag ~ R? (1 4 — ) ’ (21) We first consider the interference-limited case. In Fig. 1,

Rloga P ;, evaluated from (6), is plotted as a function @ffor a

and ZJFE A, — 0. From (7), we therefore have th& ; ~ fixed TX densityA = 0.01 nodes/km. The bounds obtained
e~*eal” | particular, ifa — oo, then, from (17),R — R, from (14) for N = 2,4 are also plotted for comparison. It is
which concludes the proof. seen that the bounds are quite tight even for such small salue

Proposition 2 implies that, in the limit of a large absorptio©f V- . ) . )
factor, P,; is equal to the probability that there are no INFig. 2, the throughputdensity()) is plotted as a function

interferers within a ball of radiu® around the typical RX. ©Of A for different operating frequencies at a transmission dis-
tanceR = 1 km. The shape of the curves is typical of random-

Proof: Making use of the fact thaF(¢,z) ~ ¢ le™®
for x — oo, we can show that, fott — oo or § — oo,

B. Network metrics access (ALOHA) systems, i.e., for smal| 7()) increases
From the definition of-()), (4), and Proposition 1, we havelinearly in ), while, for large ), it decreases exponentially,
that ORb RV and the maximum occurs at the density = V,'. The
7(\) = Aexp (—)\Vd _ aif) ) (22) curve for the interference-limited system shows the acttitey
P throughput density whel® — oo for f, = 75 kHz. The
Optimizing over the density of TXs, the optimal throughput simulation results, obtained over 20000 network topolegie
density is with 10 different fading realizations per topology, confithe
exp (_% _ 1) validity of the analysis.
Ty = 7 , (23) In Fig. 2, the maximumr, over all values off, considered
) ) o o is achieved atf, = 65 kHz. The existence of a throughput-
WhereK_/d is as in (18). S|m|larl_y, from the definition of theoptimal frequency is apparent from (23): As(or ) increases,
transmission capacity, we obtain that the denominator decreases, i.e., the larger absorptidnrfac
—log(1 —¢) — M;Wéf allows for a denser packing of transmissions. At the same
Ce = v, (1—e). (24)  time, the nominator decreases, as the useful signal poser al

_ ) o h suffers from absorptioh In Fig. 3, 7, and cg.o5, optimized
Note thatc. is defined if R”a™ < —Plog(1 —¢)/(6W4f), qyer the operating frequenc, are plotted as functions of
If we solve overf, we find that the maximum supportabler, The respective optimal frequencies are shown in Fig. 4.

transmission distance givenis For comparison, we also plot the frequency which maximizes

Rmax,fs =

b loga Plog(l—¢) /b _ _ _ ,
w — . (25) 3The increase inf, also results in a small decrease of the noise power
loga b OWéf W (fo) [7], but the absorption effect dominates.
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Figure 3. 7, andcg.05, optimized overf, are plotted vs.R. Imposing a Figure 4. Optimal operating frequencies 8. Boosting the frequency
constraintl —e = 0.95 on the success probability results in a less dense UWér moderate transmission distances increases the thpotiglensity, as it
network and in a throughput loss. The bounds on the througimeuobtained results in the absorption of interfering signal®/¢ f = 110 dBre uPa/Hz,
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the received SNRPa(f,) " #R=°/(W(f,)d f) at eachR. Note REFERENCES

that the throthpUt'o_ptimal fr_equency is sign_ific_:antlyﬁég [1] J. G. Proakis, E. M. Sozer, J. A. Rice, and M. Stojanovighallow
for moderate transmission distances, e.g., it is 65 kHz at water acoustic networks/EEE Commun. Mag., vol. 39, no. 11, pp.
R =1 km, compared to the SNR-optimal value of 20 kHz. _ 114-119, Nov. 2001.

. . . . . [2] Z. Peng, J.-H. Cui, B. Wang, K. Ball, and L. Freitag, “Anderwater
The respective throthpUt' as seen in Fig. 2, is about 7 t'méé network testbed: design, implementation and measuremerieroc. of

larger. As the transmission distance increases, the nktoer ACM WUWNet, Montréal, Canada, Sep. 2007.
comes noise-limited and the gap between the different survé3]! M. Chitre, S. Shahabudeen, and M. Stojanovic, “Undeewacoustic

N . . communications and networking: Recent advances and futhed-
narrows. At = 3.5 km, the frequency which maximizes.os lenges,”Marine Tech. Soc. Journal, vol. 42, no. 1, pp. 103-116, 2008.

is equal to the frequency which maximizes the SNR. Beyongh] D. Pompili and I. Akyildiz, “Overview of networking protols for
this value ofR, the constraintl — ¢ = 0.95 on the success underwater wireless communicationsEEE Commun. Mag., vol. 47,

e . . no. 1, pp. 97-102, Jan. 2009.
probability is no longer feasible (i.e., the numerator of)(i5 [5] F. Guerra, P. Casari, and M. Zorzi, “World Ocean SimaiatiSystem

negative for any value of,) and the transmission capacity of =~ (WOSS): a simulation tool for underwater networks with isti

the UW network is zero. propagation modeling,” ifProc. of ACM WUWNEt, Berkeley, CA, Nov.
2009.
V. CONCLUSIONS [6] M. Zorzi, P. Casari, N. Baldo, and A. F. Harris lll, “Enegrgfficient

] routing schemes for underwater acoustic networksSEE J. Sal. Areas
We proposed an analytical framework to evaluate the Commun, vol. 26, no. 9, pp. 1754-1766, Dec. 2008. _
throughput of UW networks, taking fuIIy into account the [7] M. Stojanovic, “On the relationship between capacityd afistance in

e . . an underwater acoustic communication chann&M Mobile Comput.
specific propagation characteristics of the UW channel, as and commun. Review, vol. 11, no. 4, pp. 34-43, Oct. 2007.

well as the dependence of the interference power on the T§] ——, “Frequency reuse underwater: Capacity of an acoustilular

locations. The framework is based on a random geometrig network,” in Proc. of ACM WUWNet, Montréal, Canada, Sep. 2007.
. . . l ] D. Lucani, M. Médard, and M. Stojanovic, “Capacity sogl laws for
approach, employed widely for the analysis of wirelessaadi"~ \ngerwater networks” irProc. of 42 Asilomar Conf. on Sgnals,

networks, according to which the TX locations are drawn  Systems and Computers, Pacific Grove, CA, Oct. 2008.
from a PPP. We obtained exact expressions and boundd'f W. Shin, D. E. Lucani, M. Médard, M. Stojanovic, and Vardkn,

- . “Multi-hop routing is order-optimal in underwater extewidaetworks,”
the success probability, the throughput density and thestra in Proc. OF; IEEE |gS|T, Austin,pTX, Jun. 2010.

mission capacity, as functions of salient parameters sgch[&] M. Haenggi, J. G. Andrews, F. Baccell, O. Dousse, and

icai ; ; M. Franceschetti, “Stochastic geometry and random graptis f
the trans_mlssmn distance a_nd the carrier frequency. A key the analysis and design of wireless NEWOrKEEEE J. Sd. Arcas
observation from our numerical results is that, for moderat  commun., vol. 27, no. 7, pp. 1029-1046, Sep. 2009.

transmission distances, boosting the carrier frequerglgdyia [12] M. Chitre, “A high-frequency warm shallow water acdastommunica-

inifi ; ; ; ; tions channel model and measuremenis Acoust. Soc. Am., vol. 122,
significant throughput gain, since the benefit of the absmmpt no. 5, pp. 2580-2586, May 2007,

of interfering signals outweighs the loss due to the ab8mipt [13] F. Baccelli and B. BlaszczyszyrStochastic Geometry and Wireless

of the useful signal at the typical RX. Networks, ser. Foundations and Trends in Networking. NOW, 2009,
vol. 1.
ACKNOWLEDGMENTS [14] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrepd a

. . D. E. Knuth, “On the lambertV function,” Advances in Computational
This work was supported in part by the European Commu-  Mathematics, vol. 5, pp. 329-359, 1996.

nity under the 7th Framework Programme (CLAM project),
and by the Italian Institute of Technology under the Project
Seed program (NAUTILUS project).



