
DESERT Underwater: an NS–Miracle-based

framework to DEsign, Simulate, Emulate and

Realize Test-beds for Underwater network protocols

Riccardo Masiero§, Saiful Azad§, Federico Favaro⋆, Matteo Petrani§, Giovanni Toso⋆,

Federico Guerra⋆, Paolo Casari§⋆, Michele Zorzi§⋆

§DEI, University of Padova, via Gradenigo 6/B – 35131, Padova, Italy
⋆CFR, Consorzio Ferrara Ricerche, via Saragat 1 – 44122, Ferrara, Italy

Abstract—DESERT Underwater (short for DEsign, Sim-

ulate, Emulate and Realize Test-beds for Underwater net-

work protocols) is a complete set of public C/C++ libraries

to support the design and implementation of underwater

network protocols. Its creation stems from the will to push

the studies on underwater networking beyond simulations.

Implementing research solutions on actual devices, in fact,

is of key importance to realize a communication and

networking architecture that allows heterogeneous nodes

to communicate reliably in the underwater environment.

In this paper, we first discuss the rationale behind this

work, and, then we list and briefly describe all the DESERT

Underwater libraries currently implemented. In line with

the current trends in underwater networking, our ap-

proach makes it possible to reuse the same code prepared

for simulations in order to realize underwater network

prototypes. We also present some preliminary tests that

confirm the feasibility of the proposed solution for the

design and evaluation of underwater network protocols.

In this perspective, we believe that DESERT Underwater

is a useful tool to profitably develop and test real world

applications.

Index Terms—Underwater networks, simulation, emula-

tion, test-bed, NS-Miracle, WOSS.

I. INTRODUCTION

Ocean sensing and monitoring via underwater acoustic

networks is fostering a lot of interest in the research com-

munity, as it can provide key information about the mech-

anisms that regulate our planet, as well as the ability to

effectively survey water, sea floors, and coasts on a large

scale, in support to various kinds of missions. Recent

advances in robotics, acoustic modems, and advanced

control, as well as the innovations expected in the near

future, provide most of the ingredients required for the

realization of such tasks. One of the missing key enablers

for any practical application is, however, a communication

and networking architecture that allows heterogeneous

nodes to communicate effectively and reliably in the

harsh underwater environment. When pursuing the latter

goal, researchers need to easily simulate and prototype

their protocol solutions, as well as to share the obtained

results and allow others to easily repeat the same experi-

ments. A flexible, reliable and publicly accessible tool for

performance evaluation is of fundamental importance to

test and improve the design of network protocols. Based

on the well known and widespread network simulator

ns2 [1], DESERT Underwater aims at becoming a useful

tool to DEvelop, Simulate, Emulate and Realize Test-

beds for Underwater network protocols for the research

community interested in the applications of underwater

acoustic communications.

The main objective of our work is the realization of a

complete set of public C/C++ libraries [2] for supporting

the design and implementation of underwater network

protocols. In this perspective, DESERT Underwater will

extend the NS-Miracle [3] simulation software library,

developed at the University of Padova, in order to provide

several protocol stacks for underwater networks, as well

as the support routines required for the development of

new protocols.

NS-Miracle enhances the network simulator ns2 with

an engine for handling cross-layer messages and, at the

same time, for enabling the co-existence of multiple mod-

ules within each layer of the protocol stack. In fact, NS-

Miracle shows a high modularity and has been designed

to simulate nodes whose logical architecture is as close

as possible to what would be found on actual devices.

The set of libraries called World Ocean Simulation

System (WOSS) [4] endows the network simulator with

the chance to simulate the desired protocols over realistic



2

Fig. 1. Illustration of the EMULATION setting: a single host (or a

single NS instance) controls multiple modems.

underwater acoustic channel realizations, and has also

been developed based on NS-Miracle. The design of

protocol solutions for underwater networks in NS-Miracle

yields two main advantages: i) the developers can reuse a

lot of code already written for ns2 with minor modifica-

tions, and exploit the modularity of NS-Miracle to better

organize the design of their solutions; ii) it is possible to

evaluate the performance of the designed protocol stack

via simulations that employ accurate channel model tools

such as WOSS (introduced above). Moreover, DESERT

Underwater will make it possible to evolve from pure

simulation towards the realization of actual prototypes

by framing the hardware of real acoustic modems into

NS-Miracle itself. In line with recent papers such as [5],

[6], the idea is to wrap all the commands required to

communicate with the modem hardware within an NS-

Miracle module. In this perspective, the developer can

rely on two supported experimental settings: i) a (small-

scale) EMULATION setting, where multiple acoustic

modems are connected with a single device (e.g., PC,

laptop) and controlled by a single NS-Miracle process as

illustrated in Fig. 1; ii) a TEST-BED setting, where each

acoustic modem is controlled by its corresponding unique

device (or by a unique NS-Miracle instance, independent

of other instances), as depicted in Fig. 2.

The rest of this paper is organized as follows. The

different DESERT Underwater libraries are presented in

Section II; in Section III we discuss preliminary tests that

confirm the feasibility of a network prototype exploiting

the code of DESERT; Section IV concludes the paper.

II. THE DESERT UNDERWATER LIBRARIES

In this section we summarize and briefly describe all

the NS-Miracle modules that compose the first release

Fig. 2. Illustration of the TEST-BED setting: each modem is

controlled by a single host (or a single NS instance).

of the DESERT Underwater libraries [2]. The objective

is to provide a clear picture of the currently available

DESERT protocols, in the form of an accessible list of

modules grouped according to the stack layers defined by

the TCP/IP standard. The presentation follows a top-down

approach, i.e., it starts from the upper layers (Application

and Transport layers), and proceeds through the Network

and Data Link layers. Finally, the modules implemented

for the Physical layer are illustrated: these include the

interface between the network simulator and the actual

modem hardware. At the end of the section, we also il-

lustrate four additional modules implemented to simulate

node mobility for underwater network scenarios.

To distinguish NS-Miracle modules that belong to

DESERT from those coming from different libraries

(e.g., the original NS-Miracle libraries or the libraries

of WOSS), all the modules in DESERT are named with

a prefix UW-. This prefix, however, does not mean that

the protocol solution implemented by a given module

is optimized for underwater networking (as a matter of

fact, some modules are the same as their terrestrial radio

counterparts, as is the case for the UDP module). Since

ns2, and therefore NS-Miracle, is a simulator based on

two different languages (C/C++ for module development

and Tcl/OTcl for parameter settings1), generally we can

refer to a given module by means of three names: i)

the name of the module (which corresponds to the name

of the folder that contains the C/C++ source files); ii)

the name of the corresponding dynamic library that must

be loaded before using the module itself, and iii) the

1Tcl is a scripting language that allows simple access to a set of

library functions, whilst OTcl is an extension of Tcl to provide object-

oriented functionality.



3

name2 of the corresponding OTcl object (that we must use

in the parameter configuration file to create the module

itself). Since we need to know all three names in order

to use a given NS-Miracle module, in the following we

report them for all the presented modules. If not otherwise

specified, all the DESERT modules implemented for

communication protocols can be used for simulation as

well as for both emulation and test-bed purposes.

A. Modules for the Application Layer

Currently, in DESERT there are two modules for the

application layer: the uwcbr and the uwvbr modules,

detailed in the following. Both modules send dummy

packets (i.e., with a random payload) and serve to gener-

ate network traffic according to two different mechanisms.

To work correctly, all the modules of the application layer

must be connected to a module of the transport layer (for

the technical details on how to connected two or more NS-

Miracle modules, the reader may refer to the NS-Miracle

documentation [3]).

Name: uwcbr

Description: This module implements a Constant Bit

Rate (CBR) packet traffic between a sender and a receiver.

The data traffic can be generated either by injecting

packets in the network with a constant time period or

according to a Poisson process with given mean. A single

uwcbr module represents a data flow between a pair of

nodes: if there are two or more nodes transmitting to the

same destination, the latter should have an equal number

of uwcbr modules, one for each flow.

Library name: libuwcbr.so

Tcl name: Module/UW/CBR

Name: uwvbr

Description: This module implements a Variable Bit Rate

(VBR) packet traffic between a sender and a receiver.

The data packet generation process takes place by switch-

ing between two different CBR processes, e.g., having

different average packet inter-arrival times. The switch

between the processes can be configured by the user by

providing the switching epochs. Otherwise, the simulator

can be instructed to switch at constant or exponentially

distributed intervals. A single uwvbr module represents

a data flow between a pair of nodes: if there are two

or more nodes transmitting to the same node, the latter

2Technically speaking, this is the name of the “shadow” OTcl object

associated with the C++ object implemented in the source files. For

more details, we refer the reader to the ns2 manual [1].

should have an equal number of uwvbr modules, one for

each flow.

Library name: libuwvbr.so

Tcl name: Module/UW/VBR

B. Modules for the Transport Layer

In DESERT Underwater, two modules are provided

for the transport layer: a simple module called uwudp

and a more sophisticated one named uwtp, short for

underwater transport protocol. The main features of these

two modules are detailed below.

Name: uwudp

Description: This module implements the flow multiplex-

ing and demultiplexing from and to the upper layers,

respectively. It does not support link reliability, error

detection or flow control.

Library name: libuwudp.so

Tcl name: Module/UW/UDP

Name: uwtp

Description: As the previous uwudp, this transport layer

module handles the multiplexing and demultiplexing of

data flows, but it also supports an error control technique,

as well as in-order data delivery to the upper layers. In

more detail, uwtp includes an Automatic Repeat reQuest

(ARQ) error control technique. This module can handle

both ACK and NACK messages, as well as cumulative

ACKs. To work correctly, uwtp has to know the desti-

nation port number of each application flow it handles:

this information must be provided during the setting of

the parameters for the simulations or tests that have to be

conducted.

Library name: libuwtp.so

Tcl name: Module/UW/TP

C. Modules for the Network Layer

The Network Layer is in charge of providing tools for

the network interfaces (e.g., addresses) and mechanisms

for data routing. In DESERT, we have developed three

algorithms for routing and a simple module to manage

network addresses whose format is compliant with the IP

standard. The details of these modules follow.

Name: uwstaticrouting

Description: This module makes it possible to simulate

and test data traffic which has to follow predetermined

routes. For each network node, there is an option to

choose a default gateway and/or fill a static routing table

(whose maximum size is hard-coded and fixed to 100



4

entries). This information is then exploited locally at

each node to forward the network packets, hop by hop,

throughout the predetermined paths.

Library name: libuwstaticrouting.so

Tcl name: Module/UW/StaticRouting

Name: uwsun

Description: This module implements a dynamic, reac-

tive source routing protocol. The generation of routing

paths can be made based on different criteria, such as

the minimization of the hop-count or the maximization

of the minimum Signal to Noise Ratio (SNR) along the

links of the path. uwsun is also designed to collect and

process different statistics of interest for the routing level.

Currently, this module supports all application modules

provided in DESERT (i.e., uwcbr and uwvbr), and it

can be easily extended.

Library name: libuwsun.so

Tcl name: Module/UW/SUNNode for the nodes;

Module/UW/SUNSink for the sinks.

Name: uwicrp

Description: This module, which requires very few

configuration parameters, implements a simple flooding-

based routing mechanism called Information-Carrying

Based Routing protocol, see [7].

Library name: libuwicrp.so

Tcl name: Module/UW/ICRPNode for the nodes;

Moudle/UW/ICRPSink for the sinks.

Name: uwip

Description: This module is used to assign an address to

the nodes in a given network according to the standard

IPv4 addresses; it provides the Time-To-Live (TTL) func-

tionality and does not implement any routing mechanism.

It can be configured to provide all the functional and pro-

cedural means intended for an Internet Protocol module

(e.g., fragmentation, data reassembly and notification of

delivery errors).

Library name: libuwip.so

Tcl name: Module/UW/IP

D. Modules for the Data Link Layer

The core of the data link layer is the Medium Access

Control (MAC), that administrates the access to the acous-

tic communication channel. The DESERT Underwater

libraries provide six modules which implement as many

MAC techniques: uwaloha, uwsr, uw-csma-aloha,

uwdacap, uwpolling and uw-t-lohi, all explained

in the following. Additionally, DESERT provides uwmll,

a module to map IP addresses to their corresponding

MAC addresses.

Name: uwmll

Description: Since node-to-node communications at the

link layer are performed using MAC addresses whereas

the communications at the upper layers employ IP ad-

dresses, a method to associate the latter to the former

is required. With uwmll, it is possible to set the corre-

spondence between IP and MAC addresses a priori, by

filling an ARP table for each network node. Alternatively,

ARP tables can be automatically filled using the Address

Resolution Protocol (ARP). The uwmll module must be

placed between one (or more) IP module(s) and one MAC

module.

Library name: libuwmll.so

Tcl name: Module/UW/MLL

Name: uwaloha

Description: ALOHA is a random access scheme, i.e., a

protocol that allows nodes to send data packets directly

without any preliminary channel reservation process. In

its original version [8], neither channel sensing nor re-

transmission is implemented and each node can trans-

mit whenever it has data packets to send. As a conse-

quence, packet losses can occur. In later adaptations [9],

ALOHA has been enhanced with acknowledgment pack-

ets (ALOHA-ACK). The uwaloha module implements

the functionality of the basic ALOHA protocol as well

as its enhanced version using ARQ for error control. It

is possible to freely switch between basic ALOHA and

ALOHA-ACK.

Library name: libuwaloha.so

Tcl name: Module/UW/ALOHA

Name: uw-csma-aloha

Description: This module implements ALOHA-CS [9],

an enhanced version of the ALOHA protocol introduced

above. ALOHA-CS adds a carrier sensing mechanism to

basic ALOHA, in order to help reduce the occurrence of

collisions.

Library name: libuwcsmaaloha.so

Tcl name: Module/UW/CSMA_ALOHA

Name: uwdacap

Description: This module implements DACAP (Distance

Aware Collision Avoidance Protocol) [10], which pro-

vides a collision avoidance mechanism via a handshake

phase prior to packet transmission. This phase involves

the exchange of signaling packets such as Request-To-

Send (RTS) and Clear-To-Send (CTS). This protocol in-



5

troduces also a very short warning packet in the RTS-CTS

mechanism to further prevent collisions among nodes.

DACAP is designed for underwater networks with long

propagation delays and can be implemented with and

without acknowledgements; uwdacap implements both

solutions.

Library name: libuwdacap.so

Tcl name: Module/UW/DACAP

Name: uwpolling

Description: This module implements a MAC protocol

which is based on a centralized polling scheme. To fix

ideas, focus on an AUV patrolling an area covered by

an underwater sensor field; the AUV coordinates the

data gathering from the sensors in a centralized fashion

using a polling mechanism. This mechanism is based on

the exchange of three types of messages: a broadcast

TRIGGER message, that the AUV sends to notify the

sensor nodes of its presence; a PROBE message, that the

sensors use to answer the initial TRIGGER message; and

a POLL message, sent again by the AUV and containing

the order in which the underwater nodes can access

the channel to communicate their data. This order of

polling is determined by the AUV, given the information

collected from the PROBE messages which may include,

among others, such metrics as the residual energy of the

nodes, the timestamp of the data to be transmitted or

a measure of their priority. Because of its nature, the

algorithm implemented by uwpolling does not require

any routing mechanism on top of it.

Library name: libuwpolling.so

Tcl name: Module/UW/POLLING_AUV for the AUV;

Module/UW/POLLING_NODE for the sensor nodes.

Name: uw-t-lohi

Description: Tone-Lohi (T-Lohi) [11] is a MAC proto-

col that uses tones during contention rounds to reserve

the channel. Other nodes competing for channel access

are detected during a contention round, by listening

to the channel after sending the reservation tone. T-

Lohi takes advantage of the long propagation delays

present in underwater networks to count the number

of contenders reliably, and act accordingly during the

contention round. Tone-Lohi can be: 1) synchronized (ST-

Lohi); 2) conservative unsynchronized (cUT-Lohi), which

enables the counting of all contenders by extending the

duration of the contention round to twice the maximum

expected propagation delay, and 3) aggressive unsynchro-

nized (aUT-Lohi), to reduce idle times (while increasing

the probability of collisions). The uw-t-lohi module

implements all of three versions of T-Lohi above; the user

can freely choose which one to enable. However, since

the possibility of transmitting actual tones depends on the

available hardware, this module has not been considered

for emulation and test-bed; differently, it can be exploited

for simulation purposes using WOSS.

Library name: libuwtlohi.so

Tcl name: Module/UW/TLOHI

Name: uwsr

Description: Automatic Repeat reQuest (ARQ) is the

basic mechanism to ensure that no erroneous packets

are delivered to layers higher than the data-link. When

a packet is received with errors, the receiver may ask

for retransmissions by sending a small packet called

NACK (Negative ACKnowledgment). Similarly, a suc-

cessful transmission can be notified to the transmitter

via an ACK packet. Selective Repeat ARQ allows the

transmitter to send up to N consecutive packets before

waiting for ACKs or NACKs. The packets sent and not

yet acknowledged must be buffered by the transmitter; the

receiver can also buffer packets and, in case of errors, only

the erroneous packets are sent again. uwsr implements

a Selective Repeat ARQ mechanism in combination with

an Additive Increase and Multiplicative Decrease (AIMD)

congestion control technique, similar to TCP’s congestion

window size adaptation. This protocol has been shown

to be effective because the underwater channel propa-

gation delay is sufficiently large to accommodate more

than one packet transmission within one round-trip time

(RTT) [12].

Library name: libuwsr.so

Tcl name: Module/UW/USR

E. Modules for the Physical Layer: interfaces for real

acoustic modem hardware

Currently, DESERT is supporting three different hard-

ware platforms for emulation and test-bed realization:

the S2C hydroacoustic modem, a system developed by

Evologics [13] which exploits the Sweep-Spread Carrier

(S2C) technology for underwater data telemetry and com-

munications; the FSK and PSK WHOI micro-modems,

two small-footprint, low-power acoustic modems based

on a Texas Instruments DSP and developed by the Woods

Hole Oceanographic Institution (WHOI) [14]. However,

the uwmphy_modem module, which implements the

general interface between the acoustic modem hard-

ware and NS-Miracle, can be easily extended to support

other different hardware. In the following, we describe

uwmphy_modem, along with the DESERT modules



6

specialized for the above hardware (mfsk_whoi_mm,

mpsk_whoi_mm and ms2c_evologics), as well as

an additional module called uwmphypatch that is in-

tended for preparing the OTcl scripts needed to set the

parameters of the networking prototypes to test.

Name: uwmphypatch

Description: uwmphypatch is a dumb module to patch

the absence of a physical layer when a MAC module

is used. It just receives and forwards a packet handling

the cross-layer messages required by all the MAC layers

of DESERT. The main aim of this module is to observe

the behavior of a given network protocol over an ideal

channel, before interfacing the network simulator engine

with real hardware. It should be used in conjunction with

the underwater channel or the dumb wireless channel

provided by the NS-Miracle libraries, and mainly to

gather insight about the mechanisms of the investigated

network protocol (independently of the errors that can

be introduced by the channel). Any usage related to

performance evaluation is not recommended.

Library name: libuwmphypatch.so

Tcl name: Module/UW/MPhypatch

Name: uwmphy_modem

Description: This module defines and implements the

general interface between ns2/NS-Miracle and real acous-

tic modems. uwmphy_modem manages all the messages

needed by NS-Miracle (e.g., cross layer messages be-

tween MAC and PHY layers) and contains all the simu-

lation parameters that can be set by the user, along with

the methods to change them. This module is an abstract

class that must be used as base class for any derived

class that interfaces NS-Miracle with a given hardware.

Therefore, neither an actual object for this module nor its

corresponding shadowed Tcl object can be created, hence

there is no “Tcl name” associated to this module.

Library name: libuwmphy_modem.so

Tcl name: —

Name: mfsk_whoi_mm

Description: Module derived from uwmphy_modem to

implement the interface between ns2/NS-Miracle and the

FSK WHOI micro-modem.

Library name: libmfsk_whoi_mm.so

Tcl name: Module/UW/MPhy_modem/FSK_WHOI_MM

Name: mpsk_whoi_mm

Description: Module derived from uwmphy_modem to

implement the interface between ns2/NS-Miracle and the

PSK WHOI micro-modem.

Library name: libmpsk_whoi_mm.so

Tcl name: Module/UW/MPhy_modem/PSK_WHOI_MM

Name: mgoby_whoi_mm

Description: Module derived from uwmphy_modem to

implement the interface between ns2/NS-Miracle and the

WHOI micro-modems (both the FSK and PSK version)

using the Goby software [15] to handle the connection

with the modems.

Library name: libmgoby_whoi_mm.so

Tcl name: Module/UW/MPhy_modem/GOBY_WHOI_MM

Name: MS2C_EvoLogics

Description: Module derived from uwmphy_modem to

implement the interface between ns2/NS-Miracle and the

S2C EvoLogics modem.

Library name: libmstwoc_evologics.so

Tcl name: Module/UW/MPhy_modem/S2C

F. Additional modules to simulate mobility

When underwater networks are simulated, the tested

solution should be investigated using accurate models

that encompass, among other things, realistic mobility

patterns. The DESERT libraries also include four modules

to simulate node mobility in 2D as well as 3D scenar-

ios (since in underwater environments nodes can move

along any direction in space): uwdriftposition

and uwgmposition are stand-alone mobility modules,

whereas both wossgmmob3D and wossgroupmob3D

require the installation of WOSS to work. All of them

are detailed in the follows.

Name: uwdriftposition

Description: This module implements a mobility model

that mimics the drift of a node caused by ocean

currents. Given the mean speed and direction of the

waves, the initial node’s position and its velocity,

uwdriftposition continuously updates the node’s

location in order to follow the direction of the current.

At each update, the new node position is also affected

by a random noise that aims at reproducing the waving

movement typical of objects floating in the water.

Library name: libuwdriftposition.so

Tcl name: Position/UW/DRIFT

Name: uwgmposition

Description: This module implements the Gauss-Markov

Mobility Model [16] (both in 2D and 3D), a solution

designed to produce smooth and realistic traces by appro-

priately tuning a correlation parameter α. When required,



7

uwgmposition updates node speed and direction ac-

cording to a finite state Markov process. Once the desired

mean speed vmean is fixed, α controls the correlation

between the speed vector and direction at state k and

that at k − 1.

Library name: libuwgmposition.so

Tcl name: Position/UW/GM

Name: wossgmmob3D

Description: This module also implements the Gauss

Markov Mobility Model, but with some changes that

make it directly usable with WOSS. For example, WOSS

employs the geographic coordinate system (i.e., latitude,

longitude and altitude/depth) for the positions of the

nodes; therefore, wossgmmob3D also adopts the geo-

graphical coordinate system to describe the node move-

ments.

Library name: libwossgmmobility.so

Tcl name: WOSS/GMMob3D

Name: wossgroupmob3D

Description: This module implements a leader-follower

paradigm (also known as “group mobility model”). Ac-

cording to this model, we have: i) a leader node, that

moves either randomly (i.e., according to a Gauss-Markov

Mobility Model) or by following a pre-determined path,

and ii) one or more followers that tune their movements

so as to mimic the route of the leader. The movement of

the followers is generated as the sum of two components:

a movement that attracts the follower towards the leader

and a random movement. The first one is obtained accord-

ing to the mathematical model that describes the attraction

between two electrical charges [17], whereas the second

one is still based on a Gauss-Markov Mobility Model.

Three parameters regulate the attractive component of

the overall movement of a follower: the “charge of

the leader”, the “charge of the follower”, and a third

parameter α which is used to determine the intensity of

the “attraction field”; in particular, a negative value of α

attracts the follower towards the leader, whereas a positive

value pushes the follower away. Like wossgmmob3D,

also wossgroupmob3D supports 3D mobility and, cur-

rently, can be used only in conjunction with WOSS.

Library name: libwossgroupmobility.so

Tcl name: WOSS/GroupMob3D

III. EMULATION AND TESTBED SETTINGS: A FIRST

FEASIBILITY TEST

As illustrated in the previous section, the DESERT

Underwater libraries currently provide interfaces between

Fig. 3. Sketches of the performed feasibility tests: (a) bidirectional

Link Test (from node 1 to node 2 and vice-versa); (b) Two-Hop

Communication.

the NS-Miracle network simulator and two commercial

modems: the WHOI Micro-Modem, developed by the

Woods Hole Oceanographic Institution, and the S2C

acoustic modem, manufactured by EvoLogics. To thor-

oughly test and improve the designed interfaces, we are

planning to realize extensive experimental campaigns in

collaboration with both partners. However, some prelim-

inary tests have already been performed to show the

feasibility of the adopted solution.

Part of these tests have been conducted at the De-

partment of Information Engineering of the University of

Padova, using three FSK WHOI Micro-Modems. These

modems work in the 3-30 kHz frequency range, have a

data rate of 80 bit/s and, when powered at 36 V, can reach

a working range of up to 2 km horizontally and up to 9 km

vertically. They can be controlled using the NMEA [18]

communications standard to handle both host-to-modem

and modem-to-modem communications. The communi-

cation software also provides the use of “minipackets”,

that have been exploited during our experiments, as they

do not require the preliminary transmission of control

packets (e.g., initialization messages compliant with the

NMEA standard).

A schematic representation of our first feasibility tests

is reported in Fig. 3: (a) first, we have successfully

realized a point to point communication, both in the EM-

ULATION and TEST-BED setting; (b) then, in the TEST-

BED setting, we have realized a two-hop communication

between nodes 1 and 3, using node 2 as a relay. In

detail, using the engine of NS-Miracle, each node has

been created according to a simple but complete protocol



8

Fig. 4. Illustration of the protocol stack used during the feasibility

tests.

stack using the following modules: uwcbr, uwudp,

uwstaticrouting, uwip, uwmll, uwaloha and

mfsk_whoi_mm (see Fig. 4). At the transmitter, each

data packet is generated by the CBR application; the

packet is then sent down through several layers of the

chosen protocol stack according to the engine of the net-

work simulator; the information contained in each packet

and in its header is then compressed to fit in the Micro

Modem minipacket payload using the mfsk_whoi_mm

module; finally, the minipacket is transmitted over the

acoustic channel. At the destination, each received packet

follows the reverse path: it is re-generated starting from

the payload of the minipacket and mapped into the

corresponding data structure of the network simulator;

finally, it is sent through the whole protocol stack, up

to the application layer of the destination node.

While there is indeed a functional difference between

the EMULATION and the TEST-BED setting, the only

technical difference between the two approaches is the

fitting of NS-Miracle packets into modem payloads and

the reverse operation. In the EMULATION setting, in fact,

multiple acoustic modems are connected with a single

device and therefore packets can be exchanged among

the nodes using the same mechanism as in the network

simulator (in our implementation, this is accomplished

by transmitting a pointer to the data structure containing

all the needed packet fields). In the TEST-BED setting,

instead, we need to send all the information necessary

to rebuild, at the receiver side, the original NS-Miracle

packet as it had been created and modified by the network

simulator running on the transmitter host.

TABLE I

TRACE FILE LOGGED DURING THE FEASIBILITY TEST (A) IN

FIGURE 3 (EMULATION SETTING). NODE 1 IS THE

TRANSMITTER AND NODE 2 IS THE RECEIVER.

s 7.025577068 1 CBR UDP SN=1

s 7.025577068 1 UDP Static Routing SN=1

s 7.025577068 1 Static Routing IP SN=1

s 7.025577068 1 IP ARP Tables SN=1

s 7.025577068 1 ARP Tables ALOHA SN=1

s 7.025723219 1 ALOHA FSK WHOI MM SN=1

r 10.015380144 2 FSK WHOI MM ALOHA SN=1

r 10.015380144 2 ALOHA ARP Tables SN=1

r 10.015380144 2 ARP Tables IP SN=1

r 10.015380144 2 IP Static Routing SN=1

r 10.015380144 2 Static Routing UDP SN=1

r 10.015380144 2 UDP CBR SN=1

s 14.025732994 1 CBR UDP SN=2

s 14.025732994 1 UDP Static_Routing SN=2

s 14.025732994 1 Static_Routing IP SN=2

s 14.025732994 1 IP ARP_Tables SN=2

s 14.025732994 1 ARP_Tables ALOHA SN=2

s 14.025867224 1 ALOHA FSK_WHOI_MM SN=2

r 17.018894196 2 FSK_WHOI_MM ALOHA SN=2

r 17.018894196 2 ALOHA ARP_Tables SN=2

r 17.018894196 2 ARP_Tables IP SN=2

r 17.018894196 2 IP Static_Routing SN=2

r 17.018894196 2 Static_Routing UDP SN=2

r 17.018894196 2 UDP CBR SN=2

· · ·

TABLE II

TRACE FILE FOR THE FEASIBILITY TEST (A) IN FIGURE 3

(TEST-BED SETTING) LOGGED AT NODE 1 (TRANSMITTER).

s 7.012847900 1 CBR UDP SN=1

s 7.012847900 1 UDP Static Routing SN=1

s 7.012847900 1 Static Routing IP SN=1

s 7.012847900 1 IP ARP Tables SN=1

s 7.012847900 1 ARP Tables ALOHA SN=1

s 7.013003111 1 ALOHA FSK WHOI MM SN=1

s 14.013986111 1 CBR UDP SN=2

s 14.013986111 1 UDP Static_Routing SN=2

s 14.013986111 1 Static_Routing IP SN=2

s 14.013986111 1 IP ARP_Tables SN=2

s 14.013986111 1 ARP_Tables ALOHA SN=2

s 14.014182091 1 ALOHA FSK_WHOI_MM SN=2

· · ·

In Tables I–IV, we report portions of typical trace-

files obtained for the feasibility tests illustrated in Fig. 3,

when data packets have been sent from the source to

the destination with a packet inter-arrival period of 7 s.

These files trace the packet transition from one layer

of the protocol stack (identified by the corresponding

NS-Miracle module) to the subsequent one; they are

organized in six columns, with the following meaning: 1)

packet origin (sent packet, “s” or received packet, “r”);



9

TABLE III

TRACE FILE FOR THE FEASIBILITY TEST (A) IN FIGURE 3

(TEST-BED SETTING) LOGGED AT NODE 2 (RECEIVER).

r 12.013406992 2 FSK WHOI MM ALOHA SN=1

r 12.013406992 2 ALOHA ARP Tables SN=1

r 12.013406992 2 ARP Tables IP SN=1

r 12.013406992 2 IP Static Routing SN=1

r 12.013406992 2 Static Routing UDP SN=1

r 12.013406992 2 UDP CBR SN=1

r 19.020930052 2 FSK_WHOI_MM ALOHA SN=2

r 19.020930052 2 ALOHA ARP_Tables SN=2

r 19.020930052 2 ARP_Tables IP SN=2

r 19.020930052 2 IP Static_Routing SN=2

r 19.020930052 2 Static_Routing UDP SN=2

r 19.020930052 2 UDP CBR SN=2

· · ·

2) simulation time at which the packet transition between

layers has occurred; 3) node ID; 4) source DESERT

module; 5) destination DESERT module; 6) sequence

number of the data packet. Table I and Tables II–III

refer to the feasibility test (a), for the EMULATION

and the TEST-BED setting, respectively. In the case of

EMULATION, we collected all the traces in a single file

(as commonly done when we run simulations using NS-

Miracle); in the case of TEST-BED, instead, the traces

have been created independently for each modem by the

corresponding hosts (or ns2 process). In both cases, we

can observe that all the considered protocol stacks have

been correctly traversed by the exchanged packets, at the

transmitter as well as at the receiver (the first packet is

rendered using a red boldface font, both at the transmitter

and at the receiver). Note also that the simulation time

elapsed between the transmission of a given packet and

its reception in the TEST-BED case increases with respect

to the EMULATION case (from about 3 to about 5 s); this

is due to two issues related to the TEST-BED case: the

asynchronous simulation timers of the two nodes (during

these TEST-BED tests, simulations have been launched

manually and always starting from the receiver), and the

increased complexity for mapping and de-mapping NS-

Miracle packets into modem payloads (even though the

delay introduced by this second issue is negligible with

respect to the first one). Table IV, instead, shows a portion

of the trace file generated for the relay node 2 during

the feasibility test (b). In this case, we can observe the

behavior that we imposed for the routing protocol at the

network layer: since node 2 must act as a relay, when it

receives a packet for node 3 from node 1, this packet

is propagated only up to the network layer and then

immediately sent down to be forwarded to its intended

TABLE IV

TRACE FILE OBTAINED FOR THE FEASIBILITY TEST (B) IN FIGURE 3

(TEST-BED SETTING) LOGGED AT NODE 2 (RELAY NODE).

r 11.011646986 2 FSK_WHOI_MM ALOHA SN=1

r 11.011646986 2 ALOHA ARP_Tables SN=1

r 11.011646986 2 ARP_Tables IP SN=1

r 11.011646986 2 IP Static_Routing SN=1

s 11.011646986 2 Static_Routing IP SN=1

s 11.011646986 2 IP ARP_Tables SN=1

s 11.011646986 2 ARP_Tables ALOHA SN=1

s 11.011960030 2 ALOHA FSK_WHOI_MM SN=1

· · ·

0 3 6 9 12 15 18 21 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance [m]

P
a
c
k
e
t 
E

rr
o
r 

R
a
te

 [
P

E
R

]

 

 

1 ← 2

1 → 2

Fig. 5. Packet Error Rate observed during the field experiment in the

Piovego channel.

destination.

To move beyond just feasibility tests done in the

laboratory, we also conducted a first field experiment in

the Piovego channel which flows near our department. We

put the transducers at a distance of 2 m from the bank,

where the channel is around 80 to 90 cm depth, with

a muddy bottom. We also decreased the supply voltage

of the micro-modems to 12 V, in order to decrease their

transmission ranges. Using the same script prepared for

test (a) in Fig. 3, we have performed several point-to-

point transmissions (in the TEST-BED setting) varying

the distance between nodes: i.e., we kept node 1 fixed

and moved node 2 away, in steps of 3 m. For each tested

link, we sent 50 packets, separated by a time interval of

4 seconds in both directions (i.e., from node 1 to node 2

and vice-versa).

Fig. 5 shows the observed packet error rate (PER) as

a function of the distance between the sender and the

receiver, in both directions (note that, as expected, the



10

observed underwater channel is not symmetric). Over the

acoustic channel we sent FSK packets with an overall

length of 32 bits, at a bit rate of 80 bit/s. Despite the

adverse conditions (very shallow water, wind-generated

surface ripples and noise, proximity to the bank, water

turbidity), this test allowed us to verify the feasibility of

the DESERT Underwater libraries, when used to drive

real modem hardware.

IV. CONCLUSIONS

Focusing on underwater applications, in this paper we

discussed the chance to evolve from simulations to the re-

alization of underwater network prototypes by interfacing

real hardware devices with software network simulators.

After having recognized this activity as a key effort

to profitably develop and test real world applications,

we presented the DESERT Underwater framework. This

is a set of public C/C++ libraries based on the NS-

Miracle [3] simulation software, developed at the Uni-

versity of Padova. The DESERT Underwater libraries are

meant as a flexible and reliable tool to support the design

and implementation of underwater network protocols.

We have listed and briefly described all the developed

libraries currently available. These libraries are intended

to be used jointly, possibly in many different combina-

tions, thus realizing several protocol stacks for underwa-

ter networks. We also introduced the general interface

designed to integrate the NS-Miracle network simulator

with real hardware, as well as its specialized versions for

two existing commercial modems.

Finally, we performed some preliminary tests to assess

the feasibility of the DESERT Underwater libraries for

network prototyping. These tests allow us to successfully

perform single-hop as well as two-hop transmissions

using the same code implemented in NS-Miracle for

simulation purposes. We believe that our work, the public

release of the DESERT Underwater libraries [2], and their

future development, represent a fundamental step for the

study of effective underwater network protocols, moving

from simulations to the real world.

V. ACKNOWLEDGMENTS

This work has been supported by the Italian Institute of

Technology within the Project SEED framework (NAU-

TILUS project). The authors gratefully thank Federico

Beccaro, Achille Forzan, Moreno Zorzetto and Ivano

Calabrese for their precious help in the organization and

realization of the field experiments.

REFERENCES

[1] “The Network Simulator - ns-2,” Last time accessed: March

2012. [Online]. Available: http://nsnam.isi.edu/nsnam/index.php/

User Information

[2] “The DESERT Underwater libraries - DESERT ,” Last time

accessed: March 2012. [Online]. Available: http://nautilus.dei.

unipd.it/desert-underwater

[3] “The Network Simulator - NS-Miracle,” Last time accessed:

March 2012. [Online]. Available: http://dgt.dei.unipd.it/download

[4] “The World Ocean Simulation System - WOSS,” Last time

accessed: March 2012. [Online]. Available: http://telecom.dei.

unipd.it/ns/woss/

[5] C. Petrioli, R. Petroccia, J. Shusta, and L. Freitag, “From

underwater simulation to at-sea testing using the ns-2 network

simulator,” in OES/IEEE Oceans, Santander, Spain, 2011.

[6] C. Petrioli, R. Petroccia, and J. Potter, “Performance evaluation

of underwater MAC protocols: From simulation to at-sea test-

ing,” in OES/IEEE Oceans, Santander, Spain, 2011.

[7] W. Liang, H. Yu, L. Liu, B. Li, and C. Che, “Information-

carrying based routing protocol for underwater acoustic sensor

network,” in Proc. of ICMA, Takamatsu, Kagawa, Japan, Aug.

2007.

[8] N. Abramson, “Development of the ALOHANET,” IEEE Trans-

actions on Information Theory, vol. 31, no. 2, pp. 119–123, 1985.

[9] X. Guo, M. Frater, and M. Ryan, “A propagation-delay-tolerant

collision avoidance protocol for underwater acoustic sensor net-

works,” in OES/IEEE Oceans, Singapore, 2006.

[10] B. Peleato and M. Stojanovic, “Distance aware collision avoid-

ance protocol for ad-hoc underwater acoustic sensor networks,”

IEEE Communications Letters, vol. 11, no. 12, pp. 1025–1027,

2007.

[11] A. A. Syed, W. Ye, and J. Heidemann, “T-Lohi: A new class

of MAC protocols for underwater acoustic sensor networks,” in

IEEE INFOCOM, Phoenix, AZ, US, Apr. 2008.

[12] S. Azad, P. Casari, F. Guerra, and M. Zorzi, “On ARQ Strategies

over Random Access Protocols in Underwater Acoustic Net-

works,” in OES/IEEE Oceans, Santander, Spain, 2011.

[13] “Evologics,” Last time accessed: March 2012. [Online].

Available: http://www.evologics.de/

[14] “Woods Hole Oceanographic Institution,” Last time accessed:

March 2012. [Online]. Available: http://www.whoi.edu/

[15] “The Goby Underwater Autonomy Project - Goby,” Last time

accessed: March 2012. [Online]. Available: http://gobysoft.com/

[16] B. Liang and Z. Haas, “Predictive distance-based mobility man-

agement for PCS networks.” in IEEE INFOCOM, New York,

NY, US, Mar. 1999.

[17] L. Badia and N. Bui, “A Group Mobility Model Based on

Nodes’ Attraction for Next Generation Wireless Networks,” in

IEE Mobility’06, Bangkok, Thailand, Oct. 2006.

[18] “The National Marine Electronics Association - NMEA,”

Last time accessed: March 2012. [Online]. Available: http:

//www.nmea.org/


