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Abstract

In this paper, we consider the problem of transferring channel state information (CSI) to the
nodes of an underwater network. As the CSI is derived by simulating the behavior of the underwater
channel via ray tracing, we first discuss a parallel implementation of the ray tracing software obtained
using the CUDA architecture, that helps compute the CSI faster. We then consider the problem
of making the channel state information compact, and suitable for transmission over underwater
acoustic channels. Our results indicate that a feedforward artificial neural network achieves both
good accuracy and good compression of the CSI.

1 INTRODUCTION

The detailed simulation of underwater acoustic networks faces the complex task of reproducing the
channel behavior in a way that is as accurate as possible. Usually, this task entails the computation
of a solution to the equations that model the propagation of sound waves in the water. The latter
operation typically leads to a high computational burden, compared to the empirical equations found,
e.g., in [1,2]. Such a complexity is not feasible in the simulation of networking protocols, which usually
entails tens of thousands of transmissions and should not be subject to the additional complexity of
reproducing the propagation of sound.

A solution that has been considered in several venues incorporates the free ray tracing tool Bellhop [3]
in popular network simulators such as ns2-Miracle or ns3. The former has been interfaced to Bellhop
via a software library named World Ocean Simulation System (WOSS) [4, 5], whereas the latter is
available via an addition to the Underwater Acoustic Networks (UAN) module of ns3 [6]. By knowing
the boundary conditions of the propagation environment (i.e., the shape of the bottom and the surface
of the ocean, and such environmental parameters as the sound speed profile (SSP) and the type of
bottom sediments), Bellhop can trace a number of sound rays (see also [7, Ch. 3]) from a transmission
source to any given point in space where the destination is assumed to be present; in turn this allows
the computation of the channel power attenuation, which concurs directly to the evaluation of link
level-performance via, e.g., the Signal-to-Noise Ratio (SNR) that characterizes the transmission.

In typical scenarios, ray models offer a good tradeoff between accuracy and computational complexity;
yet, in simulations involving mobile nodes and time-varying environmental parameters (hence a time-
varying outcome of the ray tracing process) the time required to complete the simulation task may
be very long, even on the order of several days. In order to shorten this time, in this paper we
propose a parallel implementation of Bellhop’s ray trajectory computation, designed using the CUDA
architecture [8]. Our results show that the parallel implementation achieves a significant speed up,
which substantially outperforms a serial computation pattern. As will be discussed in Section 2.1,
the computation of the sound pressure involves numerical integration, and thus can not be easily
parallelized using the CUDA architecture: therefore, its implementation has been kept serial, akin to
the original implementation of Bellhop. Having a fast ray tracing tool available makes it feasible to
compute some kind of channel state information (CSI), such as the statistics of the channel power
attenuation. In this paper, we will discuss how to achieve this knowledge and how to represent it in a
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compact way, suitable to be communicated to the nodes of an underwater network, thus making them
aware of the channel conditions in their proximity.

The remainder of this paper is organized as follows. In Section 2 we present the ray tracer implemen-
tation in CUDA and compare its performance to that of Bellhop; in Section 3 we discuss how to make
the CSI compact and suitable for transmission to the nodes of an underwater network; in Section 4
we discuss the accuracy of such channel information representation methods; in Section 5 we draw
some concluding remarks.

2 A RAY TRACER FOR UNDERWATER ACOUSTICS USING CUDA

We start by introducing Bellhop [3], a well known ray tracing tool for simulating the propagation of
sound under water using ray models. We refer the reader to [7, Ch. 3] and to the references therein
for a detailed introduction to ray models. In the following, we will summarize a few key points of
Bellhop. Given the parameters of the environment (SSP, bathymetry, surface wave profile, as well as
the geoacoustic parameters of the bottom sediments) Bellhop computes the ray trajectories and the
acoustic pressure (assuming a unit power source) at every point of a predefined uniform grid in the
(range,depth) plane.

One of the central components of Bellhop is the TraceRay procedure, which numerically integrates
the coupled first-order differential ray equations and the dynamic ray equations in order to obtain the
trajectory and amplitude of each ray departing from the source. Define r and z as the ray coordinates
in the “range” and “depth” dimensions, respectively. Therefore, a sequence of (r(s), z(s)) pairs pro-
vides a sampled version of the ray trajectory as a function of the parameter s, which is defined as the
arclength along the ray. Define also c(s) as the sound speed along the ray path, cnn as the curvature
of the sound speed in a direction normal to the ray path, p(s) as the ray amplitude and q(s) as the
ray beamwidth. The ray equations can then be written as follows (the auxiliary variables ξ and ζ have
been introduced in order to write the coupled ray equations using first-order derivatives) [7, Ch. 3]:

dr

ds
= c ξ(s)

dξ

ds
= − 1

c2
dc

dr

dz

ds
= c ζ(s)

dζ

ds
= − 1

c2
dc

dz

,


dq

ds
= c(s)p(s)

dp

ds
= − cnn

c(s)2
q(s)

(1)

The solution to these equations (together with initial conditions on the initial ray coordinates and on
the ray takeoff angle) provides the trajectory of the ray in the form of its range and depth coordinates
r and z. Solving the dynamic ray equations yields the ray amplitude and beamwidth. As can be seen
in (1), the knowledge of the speed of sound in the range-depth plane is required in order to solve
the ray equations. A common approximation that is usually made in this regard is to assume that the
sound speed does not vary with the distance from the source. In any event the SSP, i.e., the function
describing the variation of the speed of sound with depth, is still required.

Once the trajectory of a ray has been computed, Bellhop proceeds with the calculation of the related
sound field. To this end, the user must specify a function that describes the decay of the sound
pressure associated to the ray in a direction normal to the ray trajectory. Among the several available
options, we will consider a Gaussian beam shaping in the following.

By repeating the above procedure for several rays leaving the source with different departure angles,
Bellhop approximates the sound pressure at any given point in space by taking all rays for which the
point falls within the ray beamwidth, and by computing the pressure as a function of the amplitude
of these rays. In the following, we consider the “coherent” sound pressure computation, which is
performed as in [7, Eq. (3.41)].

2.1 RAY TRAJECTORY COMPUTATION USING CUDA

CUDA [8] is a parallel architecture that allows programmers to leverage on the computing power
of modern Graphics Processing Units (GPUs) to carry out computations. The CUDA architecture
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bases its floating-point algebra performance on a very high level of parallelization. Therefore, to
take advantage from it, an algorithm must support a parallel implementation. The computation of
the ray trajectories in a stratified water medium supports such an implementation very well. In fact,
by rewriting the ray equations so that the range coordinate r appears as a function of the depth
coordinate z we get [7, Eq. (3.71)]

d2r

dz2
=

[
1 +

(
dr

dz

)2
] [

1
c

(
dr

dz

)
dc

dz
− 1
c

dc

dr

]
. (2)

As anticipated in the previous Section, we approximate c as being independent of r. Therefore we get

r(z) = r(z0) +
∫ z

z0

ac(z′)√
1− a2c(z′)2

dz′ (3)

where a is an arbitrary parameter generally set equal to cos θ0/c(z0), where θ0 is the ray takeoff angle.

The knowledge of the SSP is instrumental to solving (3). However, the SSP is typically unavailable
in the form of a function. More commonly, the SSP is provided in a sampled form and must be
interpolated within each pair of subsequent samples. When linear interpolation is employed, the SSP
becomes a piece-wise linear function, and the water column can be viewed as a stack of c-linear
layers [7, Section 3.6.3]. Call zi, i = 1, . . . , Nc, the values of the depth where a SSP sample is
available, and define a layer as the portion of the watercolumn within any two such depths [zi, zi+1).
Within a layer, Eq. (3) yields

r(z) = r(zi) +
√

1− a2c2

ag

∣∣∣∣∣
c(z)

c(zi)

, (4)

where c(z) = c(zi) + gz is a linear function, and g is the slope of the line. This equation can be
re-arranged to yield the equation of a circumference of radius R = 1/(ag) and range coordinate of the
center b =

√
1− a2(c0 + gzi)2/(ag).

Once the equation of the arc of circumference followed by the ray within a layer is known, the com-
putation of the trajectory inside the layer can be completely parallelized. The code we developed to
perform this task acts in parallel both across rays and within one ray. In particular, for each ray, the
code takes 32 points at equally spaced depths within every layer, and delegates the computation of
the circumference points to 32 separate CUDA threads. With this configuration, every thread derives
exactly one ray trajectory point per layer, in order to achieve the fastest computation speed. At a later
stage, these points are assembled into the complete ray trajectory. Whenever a new trajectory point
is computed, the thread also checks whether bottom or surface interactions occur; in this case, Snell’s
law is employed to compute the reflection angle and the new equation of the ray trajectory.

2.2 DISCUSSION ON SOUND PRESSURE COMPUTATION IN CUDA

Once the ray trajectories have been derived, the next steps are (i) to compute the amplitude and
beamwidth of each ray by integrating the differential equations for p and q in (1) and (ii) to compute
the sound pressure in the (r, z) plane, usually on a grid of equally spaced points.

We have tried several patterns to parallelize the pressure computation, but they always resulted in
comparable or higher computation time than with the “serial” version of Bellhop. The main reasons
for this outcome can be explained as follows. Step (i) requires numerical integration, which is a step-
by-step operation, i.e., it serially considers all points 1, 2, . . . , n, . . . along the ray path and requires
the knowledge of the result of the integration at point n in order to compute the integration result at
point n+ 1. This makes parallel implementations subject to many memory transactions, which in turn
decrease the effectiveness of the parallelization. Step (ii) requires to compute the distance between
every point of the grid and the trajectory of every ray, as this is required to compute the contribution
of the sound pressure at every grid point. This operation is subject to a practical shortcoming. In
principle, every check requires a memory access to retrieve the coordinates of the grid point. Since
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Figure 1: Amount of time required for computing the ray trajec-
tories as a function of the number of rays, for CUDA-enabled
(GT 540M, GTX 580) and non-CUDA-enabled (E8400, X5650)
systems.

CPU / RAM GPU / GRAM

Intel Core-2 Duo E8400
(3.0 GHz, 6 MB cache),
4 GB DDR2

——

Intel Xeon X5650 (2.66
GHz, 12 MB cache),
16 GB DDR3

——

Intel i7-2670QM
(2.2 GHz, 6 MB cache)
8 GB DDR3

Nvidia GT 540M
2 GB

Intel i7-2600
(3.4 GHz, 8 MB cache)
16 GB DDR3

Nvidia GTX 580
3 GB

Figure 2: Systems where the serial and par-
allelized versions of the ray tracer have been
tested.

both the trajectory and the width of each ray evolve as the ray propagates, it is very difficult to fore-
see a priori which grid points will be involved in the checks. In turn, this issue makes it difficult to
combine memory accesses into a single operation, and decreases the speed of the pressure compu-
tation. Due to the lack of substantial performance improvements in the parallel version of the pressure
computation algorithm, we preferred to keep the pressure computation serial.

2.3 RESULTS ON THE EXECUTION TIMES

In this section, we present a comparison of the time required to compute the ray trajectories by the
serial and the CUDA ray tracer implementations. We stress that the measured execution times include
the time required to move data from the RAM of the host computer to the RAM of the CUDA device
and back. The comparison is carried out for a shallow water scenario, which is more challenging
from a computational point of view because of the large number of seabed and surface interactions
incurred by the rays.

We performed several tests for different numbers of rays to be traced using the systems listed in
Table 2. The trajectory computation times resulting from the tests are shown in Fig. 1. The results
clearly demonstrate the advantages of the CUDA implementation. Notably, even the low-end GT
540M graphics card achieves a significant speedup of about 11 times with respect to a high-end Intel
Xeon-based workstation. With the high-end GTX 580 graphics card, the speedup achieved is even
higher, around 43 times.

3 TRANSFERRING CHANNEL AWARENESS TO THE NODES

A faster tool for the simulation of underwater sound propagation finds several applications in under-
water communications. In this paper, we will consider the transfer of channel state information (CSI)
to the nodes of an underwater network. This task encompasses the use of the ray tracer to compute
performance metrics related to the channel behavior, as well a compact method to represent these
metrics.

In the following, we define the CSI as the probability that the SNR, i.e., the ratio between the received
acoustic signal power and the noise power, at any given point in the (r, z) plane exceeds a desired
threshold θ. We denote this probability as p(r, z) = P [SNR > θ]. To compute this probability we pro-
ceed as follows. We assume that the network operates at a frequency f = 20 kHz for a shallow water
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Figure 3: Example of channel realization and probability map derivation. (a) monthly average of the SSP for the
month of May from [9], at (10.5◦E, 42.5◦N); (b) corresponding channel power attenuation derived using the ray
tracer for f = 20 kHz (darker shades of grey correspond to a weaker signal); (c) p(r, z) for θ = 10 dB and a
transmit power of 110 dB re µPa (darker shades of grey correspond to a lower probability). In (b) and (c), the
position of the transmitter is marked by a black cross.

area of depth 100 m at (10.5◦E, 42.5◦N), in the Tyrrhenian sea. We approximate the sea surface and
bottom as flat. We generate 5000 random realizations of the SSP. To do this, we assume operations
in the month of May, and take the corresponding average SSP from the world ocean database (WOD)
2009 [9]. Akin to the discussion in Section 2.1, the SSP is provided as a set of samples, taken in this
case at the standard depths of 0, 10, 20, 30, 50, 75 and 100 m. Each random realization of the SSP
is generated by applying a displacement (uniformly drawn in the interval [−4,+4] m/s) to each SSP
sample. We perform a separate run of the ray tracer for each SSP sample, and derive the channel
power attenuation at a set of points arranged in a grid in the (r, z) plane, where r spans the ranges
from 12.5 m up to 2500 m in steps of 12.5 m, whereas z spans the depths from 1.25 m up to 95 m in
steps of 1.25 m. By assuming that the source power level is 110 dB re µPa and using the empirical
equations for the noise power spectral density in [2] with a shipping factor of 0.5 and a wind speed of
0 m/s, we compute the SNR for each pair (r, z) and for every realization of the SSP. Finally, for each
(r, z) pair, we compute the probability p(r, z) that the SNR exceeds θ. Fig. 3 shows an example of the
derivation of p(r, z). In particular, Fig. 3(a) shows the average May SSP taken from WOD 2009 [9],
and Fig. 3(b) shows the corresponding channel power attenuation yielded by the ray tracer. Fig. 3(c)
shows a pseudocolor plot of p(r, z) for θ = 10 dB.

We stress that such probability map can be employed for several networking purposes. For example,
a routing protocol may employ the map to choose the relays located in those areas where p(r, z) is
highest. However, it is infeasible to assume that every node in an underwater network can compute
its own p(r, z). A more likely scenario is that a control center or gateway node with sufficient com-
putational power computes p(r, z) and transmits it to the nodes using some form of broadcast. It is
therefore of interest to find a compact representation of the map, suitable to be transmitted to the
nodes. This is the subject of the next subsection.

3.1 REPRESENTATION OF THE CHANNEL STATE INFORMATION

As introduced in Section 3, the map in Fig. 3(c) is obtained by finely sampling the (r, z) plane, using
200 points in the range dimension and 76 points in the depth dimension. Assuming one double-
precision floating point number (8 Bytes) is employed to represent each probability value, the total
size of the probability map is S = 121.6 kBytes. In the following we consider two different options to
reduce the size of the map: (i) we subsample the map by a factor M in both the range and the depth
dimensions: this reduces the map size to Ls = S/M2; (ii) we train a Feedforward Artificial Neural
Network (FANN) to approximate p(r, z).

FANNs are a well-known way to approximate functions (possibly with multiple inputs and outputs)
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Figure 5: Amount of CSI (in kBytes) to be
transferred to the network nodes in order to
provide channel awareness.

that are too complex to be modeled using some closed-form equation. For a comprehensive survey
of FANNs we refer the reader to [10]. For the present discussion, suffice it to say that FANNs can
be described using nodes (the neurons) and edges (the connections between neurons) as in Fig. 4.
Typically, a FANN always has at least two layers: the input layer, containing as many nodes as input
variables, and one output layer (with as many nodes as output values). In addition, a FANN typically
has one or more hidden layers, depending on the complexity of the function to be approximated.
For the probability map approximation considered in this paper we will consider FANNs with one
hidden layer. With the exception of input nodes, which only replicate their respective input on all
output edges,1 every node computes its output as a non-linear function of the weighted sum of its
inputs plus a bias, that is usually modeled as an input from a separate neuron from the previous
level (see Fig. 4). Namely, call j a node and Pj the set of all nodes that provide an input to j. The
output yj of j is computed as yj = f

(
βj

∑
i∈P wijxi

)
, where the xis, i ∈ Pj are the inputs to node

j. We note that the input from a bias neuron is always 1. The function f is called the activation
function. In our implementation we take f(·) = tanh(·). The parameter βj is employed to set the
steepness of the activation function, and for every node it takes one among a finite set of values.
In this paper we consider four values, hence the steepness can be represented using 2 bits, or
0.25 Bytes. Call |I| and |H| the cardinality of the input and hidden neuron sets, respectively (the
cardinality of the output set is 1). The size of the information to be transferred to the nodes in Bytes is
Ln = 8

(
(|I|+ 1)|H|+ (|H|+ 1)

)
+ 0.25 (|H|+ 1) = 8 (4|H|+ 1) + 0.25 (|H|+ 1), as |I| = 2. We remark

that the (|I|+ 1) and (|H|+ 1) terms account for the bias neuron in the respective layers.

Fig. 5 shows the amount of information (in kBytes) to be transferred to the network nodes in order to
make them channel-aware. The abscissa represents the subsampling factor in case a subsampled
probability map is transmitted, or the number of neurons in the hidden FANN layer in case the weights
of the FANN are transmitted. We observe that for M = |H| = 15, we have Ls ≈ Ln ≈ 500 Bytes.

For reference, in Fig. 6 we show the original p(r, z) map (a), and compare it to the approximate maps
that result from subsampling by a factor M = 8 (b), and from training a FANN with |H| = 30 hidden
neurons (c). For these values the cases (b) and (c) achieve approximately the same map size of
1 kByte. We observe that the FANN approximates better the ridges and troughs of the map with
respect to plain subsampling. In the following Section we will detail the comparison between the
subsampling and FANN methods to approximate the SNR probability map.

4 PERFORMANCE OF THE REPRESENTATION METHODS

We now proceed by comparing the approximation to p(r, z) for the subsampling and FANN methods
described in Section 3.1. The comparison will be carried out in terms of the mean square error
(MSE) of the approximation, the probability of false positive and the probability of false negative. The

1For this reason, the input layer is usually excluded from the layer count, i.e., the network in Fig. 4 is said to have two layers.
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Figure 6: Original and approximated versions of p(r, z) for θ = 10 dB. (a) original map (the same as in Fig. 3(c),
shown in 3D and seen from the upper right corner); (b) output obtained by subsampling the original map, M = 8;
(c) output of the FANN with |H| = 30.

false positive and false negative events are defined as follows. Assume that, in order to achieve
reliable transmissions, we want p(r, z) to be higher than some desirable value α = 0.75. For each
representation method, we say that a false positive occurs if the method predicts p(r, z) ≥ α, whereas
the actual p(r, z) < α. A false negative occurs in the opposite case.

Fig. 7 shows (a) the MSE, (b) the probability of false positive and (c) the probability of false negative
for the subsampling and FANN representation methods (top and bottom row, respectively). For the
subsampling method, the metrics are shown as a function of the subsampling factor M (hence a more
precise map is obtained for a lower value of M ), whereas for the FANN method the metrics are shown
as a function of the number of neurons in the hidden layer, |H| (hence the map is generally better
for larger values of |H|). The figures provide quantitative evidence that the FANN approximates the
map better than what achieved by subsampling. In particular, let us consider M = |H| = 15, which
yields the same map size of about 500 Bytes for both methods as per Fig. 5. In this case, the MSE
achieved by the FANN is about 0.150, against 0.340 achieved by subsampling, the probability of false
positive is 0.045 against 0.070 and the probability of false negative is 0.042 against 0.050. We also
note that a lower number of neurons in the hidden layer (e.g., |H| = 10) still makes the FANN achieve
a MSE, a probability of false positive and a probability of false negative that are almost the same as
in the |H| = 15 case, but with an even smaller map size, amounting to about 320 Bytes. We therefore
conclude that FANNs are a suitable method for compressing the channel state information (in this
case, the SNR probability map) in order to convey it through an underwater network.

While the results in this section are presented for a specific shallow-water scenario and for specific
system parameters (e.g., the frequency f and the SNR threshold θ), the same conclusions are ex-
pected to hold in other scenarios. Further results (not shown here due to lack of space) for different
values of f and θ, and for different depths of the transmitter support this statement.

5 CONCLUSIONS

In this paper, we have considered a specific definition of CSI for underwater acoustic communications
(i.e., the probability that the SNR at a given depth and range from the source of a transmission is
greater than a desired threshold). We then discussed a parallel implementation of a ray tracer based
on the NVidia CUDA libraries, which helps simulate the underwater channel behavior faster than
with other free tools currently available. In turn, this also helps compute the CSI faster given the
parameters of the underwater scenario under consideration.

We finally argued that a fast tool for computing the CSI makes it possible to endow the nodes of an
underwater network with channel awareness, provided that the CSI can be suitably compressed. To
this end, we showed that neural networks make up a suitable tool to accurately approximate the CSI,
while keeping the amount of information to be transferred to the underwater network limited.
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(b) Probability of false positive.

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Subsampling factor, M

P
ro

b
a
b
ili

ty
 o

f 
fa

ls
e
 n

e
g
a
ti
v
e

(c) Probability of false negative.
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Figure 7: MSE (a), probability of false positive (b) and probability of false negative (c) for the subsampling method
(top row), as a function of the subsampling factor M , and for the FANN (bottom row), as a function of the number
of neurons in the hidden layer, |H|.
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