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* Introduction on underwater acoustic communications
* Design challenges and opportunities

* Examples of important issues to be addressed (and of
recent research results):
e Conceptual studies via analysis
e Simulation tools
e Experimental capabilities
 Practical protocol design
e Data analysis and data-driven design criteria
¢ Conclusions
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Why underwater networks

¢ Lots of applications could benefit
e Equipment monitoring (pipelines, etc.)
e Unmanned vehicle coordination
e Patrolling of port/harbor/ship nearabouts
e Environmental monitoring

* Different requirements
e Periodic/bursty data
* “Real-time” traffic
e Reliability/disposability |
* Energy efficiency
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Typical underwater network scenario
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Underwater signaling technologies

® Radio communications
e Tend to fade very rapidly in water
e Some radio transceiver actually being developed
® Optical communications
e Very high bit rate within (short) reach
e Dispersion, high attenuation, need for alignment
© Acoustic communications
e Technology of choice to date
e Very long reach supports typically required transmission ranges
e Very slow (~ 1500 m/s) propagation speed with respect to radio in air
¢ Noise and attenuation are frequency-dependent
e Limited (frequency and distance-dependent) bandwidth and data rate
e Strong fading phenomena, especially in horizontal channels
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mpirical underwater propagation model
(e.g., see Urick, “Principles of underwater sound”)

¢ Single-path
transmission loss equation > A(r, f) = rba(f)r
* Absorption (pressure turns into heat) = Thorp’s formula:

(40f2/(4100 +F2) +0.172/(1 + f2)) dB/km

£
E.
* “Anisotropic” propagation E n
* Different path loss § vl
e Different channel behavior g o}
(fading, convergence zones, <.
shadow zones, ...) {8 NS S T T N I B I A
Frequency [kHz]
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From: M. Stojanovic, “On the Relationship

- N O i S e m O d e I Between Capacity and distance in an

Underwater Acoustic Communication
Channel,” WUWNET 2006.

® Sum of four components w
W(f) = Ni(f) + Ns(f) + Ne(f) +Nen(f)
* Where _
10log N, () = 17 - 80log f
10log N, (f) = 40 + 20(s — 0.5) + 26log [ §
—601log(f +0.03)
10log Ny (f) = 50 + 7.5w!/? 4 201log f
—A40log(f +0.4) e
]ﬂ ]f)g ]\"}h{f} e —1 53 + 20 10% f, 10 lgrum

® Various sources: turbulence, shipping, wind,
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~ A consequence: distance-dependent bw
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* Gives rise to significant propagation delays
(with respect to the packet transmission time)
® Usually averaged to 1500 m/s

* Depends on the physical characteristics of the
water

e Salinity, temperature, pressure

® Changes with depth: propagation is critically
affected by the Sound Speed Profile
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Underwater acoustics vs. radio

* Radio ® Acoustics

e High bandwidth (MHz) ° Low bandwidth (kHz)
Short prop delays (us) <« ¢ Long prop delays (seconds)
Well understood propagation < ¢ Complicated propagation
Isotropic propagation «———— Anisotropic propagation
Distance-independent bandwidth «—— Distance-dependent bandwidth
Typically white noise Frequency-dependent noise
Energy costs Energy costs
* TX~RX~idle >>sleep ° TX>RX>>idle >> sleep
Small and cheap nodes «— > ¢ Bulky and expensive nodes
e Lots of research done on all «— ¢ Lots is known on PHY, little on

communications aspects networking
e Accepted channel models «——— ¢ No comprehensive channel model
e Easy to experiment * Very hard to experiment
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On underwater channel modeling

® Unlike in radio, there are no well-established models for
acoustic propagation and channel behavior
e Very erratic and hard to model, lack of interest in the past?
e Some disconnect between acousticians and comms engineers?

* Experimental data
e A lot of data out there (though not always easily accessible)
e Little attention to networking metrics — not very useful as it is

® Available approaches
e Simple empirical formulas
e Complicated ray models based on the geometry of the environment

e Anything in between?
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* Solves the propagation equations for sound in bounded
sea water using the following environmental parameters

e Sound speed profile
» Function relating the speed of sound to the depth

¢ Profile of surface waves
¢ Profile of the sea bottom

* Type of sediments on the bottom
» E.g., mud absorbs part of the sound intensity, rock does not
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Example:

4 kHz, from th
shore of the
Italian island

of Pianosa
(42.585°N, 10.
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Roadmap
* Several approaches to study/design underwater systems
and networks are possible/have been used
* Here we focus on the following:

* Conceptual approaches (general results based on simple
models and analytical tools)

Simulation approaches
e Experimental approaches and capabilities

Practical protocol design (e.g., with hardware limitations)

Data-driven protocol design and adaptation/optimization
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Roadmap

* Several approaches to study/design underwater systems
and networks are possible/have been used
* Here we focus on the following:

* Conceptual approaches (general results based on simple
models and analytical tools)

» Simulation approaches

* Experimental approaches and capabilities

» Practical protocol design (e.g., with hardware limitations)

» Data-driven protocol design and adaptation/optimization
* DISCLAIMER: here we do not give a survey of existing

work, but rather describe a vision using examples drawn
from our own work
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The throughput of underwater
networks: analysis and validation

® Question 1: can we deploy a suitable model for analyzing
the throughput of underwater networks?

e Usually this requires to approximate the propagation model using,
e.g., the empirical formulas (Urick model)
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networks: analysis and validation

® Question 1: can we deploy a suitable model for analyzing
the throughput of underwater networks?

* Usually this requires to approximate the propagation model using,
e.g., the empirical formulas (Urick model)

® Question 2: is the model representative of more realistic
channel behaviors (e.g., obtained via ray tracing)?
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Approach

* Model the throughput of underwater networks using a
stochastic geometry approach

* Simulate random underwater network deployments using
ray tracing for computing the channel power gain

* Show that there is in fact an agreement between the
simulation and the analysis...

e ..provided that the channel model parameters are properly
fitted to the average channel gain yielded by the ray tracer
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Assumptions

* The channel power gain at a frequency f consists of

e path-loss 7 "a(f)™" > b is the path-loss exponent

* exponentially-distributed fading /.(f) (/1 (f) is Rayleigh)
* Fading is independent and randomly distributed
* Noise is additive with the psd 1V/( f) shown before
* Narrowband transmission within a band 4 f around f,

* Node positions distributed according to a
Poisson point process (PPP)

* «Typical» RX located at the origin of the coordinate system
* All nodes transmit and interfere at the typical RX
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e

Definitions

e Signal-to Interference and Noise Ratio

(affecting the link between the RX at the origin of the

coordinate system and a TX located at x,)
/?\FOR'E’(I—R
* where P [ isthe interfering power and

I= Y hyfe] bl
zed\{zo}

* Probability of success of a transmission P, = P(SINR > 6)

SINR =
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~ Probability of success

¢ Since fading is exponentially distributed, we have
[Haenggi et al., «Stochastic geometry and random graphs for the analysis and
design of wireless networks», IEEE JSAC 2009]

ORP RV §
P, _E»,xp (-%)}% (GRb(:.Ri] 2 p,.P.

F sn P s,
. 1R R ~
o0 -40:Rd+('lqu;:i—l’ I['(d—b Rloga),
n 3
Poi=exp | —Ac E —-1)"A 1Ria~Rn i
sl I d ( ) " A, :‘f-k'—’l 1Fild+bnod+bn+1: Rrloga)
—0 d+bn
d (H}?erR)nH x
+ W Tld—bln+1).R(n+1)loga), n=>
n+1)loga
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Network metrics

O RV
* Throughput density 2> 7(\) = Aexp (—)\Vd — an)
1 HRb PV §
® Opt. throughput density 2 7, = v exp (—an — 1)
g :

® Transmission capacity

1 - O R aRW 5
C. = nmx{ 7 (— log(l —¢) — an) .D}

* Maximum radius for supporting a transmission capacity -

o o — 1/b
R . = b W loga (P 105(71 - £)
' log a b oW f
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Frequency f, [kHz|
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Validation using ray tra'c_in'wg

* |.e., compare the analysis against the results of network

simulations where the propagation is computed using the
ray tracing software Bellhop
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Validation using ray tracing

* |.e., compare the analysis against the results of network
simulations where the propagation is computed using the
ray tracing software Bellhop

® Assumptions

¢ 2D network (all nodes fixed at the same depth)
e Flat surface profile
e Flat bottom profile

31
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Validation using ray tracing

* |.e., compare the analysis against the results of network
simulations where the propagation is computed using the
ray tracing software Bellhop

® Assumptions

e 2D network (all nodes fixed at the same depth)
e Flat surface profile
* Flat bottom profile
* How to obtain a channel «fading» process with ray tracing?
e Randomize the SSP, perform ray tracing for each random SSP

® Use the resulting channel gains as a «database» of channel
realizations to be used in simulations
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ching the parameters
model to the output of Bellhop

e Urick

Average channel power gain [dB]

TR\ \ N

_8ok-- fo= 90 kHz \

(b=1.875)

T T
; _ _ : Bellhop

e b([,(f ) r <—— ——Urick model
‘ ] v Uripk model, _variable b

N

)
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the overall path energy
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With perfect power control
Delay increases, but slowly and not linearly (shorter hops, more bw)
For each total path length, there is a number of relays that minimizes

Michele Zorzi, Univ. of Padova, Italy - zorzi@dei.unipd.it

38

03/10/2012

19



03/10/2012

25 T T 8
—— Variable bandwidth —v—Optimal hop distance
. =v—-WHOI MM 9 KHz band
v =& =WHOI MM 15 KHz band
f 1w WHOI MM 25 KHz band | 7
20 ‘
i
y
J £
- N 3
£ i P - 2
H ’f: L,. [ ",.f" s
~ "
’ 2
g / o - v"’ﬂw'""..-ﬂ‘"".«-ﬂ""‘, 3
|
' é 4 4
3
0 10 20 30 80 0 100 %

. " " L . . s s s .
a0 50 60 0 10 20 a0 40 50 60 70 80 0 100
Total path length [km] Qverall distance [km]

* The average density of relays that minimizes energy is
relatively insensitive to the path length

* The minimum energy itself is not very critical
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Bounded Distance Protocol

* The previous results suggest that there is some kind of

“universally optimum hop length” for minimum energy (given
the scenario)

* |dea: bounded distance routing protocol

e Attempt to transmit to farthest node within X meters, but towards the
destination (i.e., within some angle)

» Note: shorter hops are “less suboptimal” than longer ones
¢ If no such node exists, pick the closest that is at least X meters away
e Choose X optimally based on previous analytical results

* Compared with: Greedy minimum energy (shortest transmit

distances), Shortest hop count (longest transmit distances),
Optimum path centrally computed
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Simulation results

9

—é— Bounded Distancy from above, 5w
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v Bounded Distance
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® Here we simulate the actual routing protocol as well as MAC

Omax (km)

* Energy is smaller in our scheme (optimal tradeoff)
* There is no delay penalty

* The minimum-energy point corresponds to better throughput
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Insights...

* Analytical approaches are possible and useful for
general results

* However, they need to be validated for consistency with
channel behaviors

* A purely experimental approach is likely infeasible, but a
proper mixed of analysis, real data, and accurate
models may provide useful information

* Note: some of the assumptions made (e.g., frequency
tuneable transceivers) may not hold in practice
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- World Ocean Simulation System

* The World Ocean Simulation System (WOSS) is a fully automated
framework for integrating channel and network simulation
software

® QOriginally thought as an interface between ns2 and Bellhop, it
can be interfaced with any channel simulator, to which it can
provide all required environmental data

* WOSS provides a flexible, extendable, technology-independent
API for

« retrieving and manipulating bathymetry, Sound Speed Profiles (SSPs) and
bottom sediment data from standard or custom databases

» manipulating transmission loss or channel power-delay profile as output by the
channel simulator and feeding it to the network simulator

» optionally storing and retrieving channel simulation outputs in a custom
database for later use

® Code available at
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® Throughput
normalized
to channel
capacity

@ Attenuation
higher with
Bellhop
=> lower SNR,
increased bit
error rate,
decreased
throughput
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® Throughput
normalized
to channel
capacity

@ Attenuation
higher with
Bellhop

increased bit
error rate,
decreased
throughput
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© DACAP and aT-Lohi’s ranking is different for different channel modeling
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From simulation to experiments

* Simulation tools are very useful to study complex
scenarios at low cost

* However, we would like to also be able to test and
validate the simulation results in a real scenario

* |dea: connect simulation software to actual hardware,
which saves a lot of development effort and makes
simulation and experiments directly comparable

* Some platforms have been proposed for this purpose,
DESERT UW is one of them that we developed
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The DESERT Underwater libraries

\
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) | ) i) |
|
( MLL ){ ALOHA )CPOLLINSB) g =5 (mzj ( S J Mobility modules
o) (i) (G2 (G )i“ f ) @ 0)
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The DESERT Underwater libraries
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sibility tests in colla
with several partners

| * Piovego channel, Padova
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® Ligurian Sea
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| Recent test

e

s of SUN using DESERT

* Werbellin lake, Germany,
August 2012

* 6 modems: Evologics S2C
mid-frequency (18-36 kHz)

* Several experiments ¢ Qutcomes
e Node failure * Delivery delay
e Route recovery * Overhead
e Appearance of new nodes e Traces of trafficin the
e Sink mobility network
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* Reactive source routing protocol

* Designed to support
* Both stationary and mobile nodes
e Multiple sinks
* Does not require channel state information and
location information at the nodes (easy to implement)
* Some improvements compared to usual source routing

e End nodes are periodically probed by the sink for more
efficient mgm of the route replies (plus optimizations)

e Timed transmission buffer management improves some MAC
effects, decreasing congestion

IWCMC - 2012-08-28
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SUN phases

é Endnodes
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éé Source . éJ}"é

1) Periodic probing for notifying end nodes

2) Route request

End

é é nodes \g! ?/

g
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Source Ef:t E; é é ’ﬂ RQ

4) Selection of the best route

3) Route reply in the presence of multiple answers
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ecent tests of SUN using
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Sequence number of the generated data packets [SN]
[m]
* «Failed» node requires the

protocol to adapt and findanew ™
route

e Path error packets are issued
followed by new route request
and replies

e New packets follow the new route
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Insights...

* Tools to capture complex behaviors are very useful in
order to lend credibility to the results

* Experimentation is very important in order to verify the
proposed approaches, but is very costly and difficult

* A proper tool to interface simulation software and real
hardware has proved very useful

® Open source tools will encourage other researchers

* To develop an effective and reliable methodology to test
protocols in realistic environments remains a challenge
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ne-varying channel

static links

* Post-processing of experimental data highlighted fluctuations
of the channel quality over intervals of time relevant for both
communication systems and networking protocols

I0NS In

* It would be useful to identify the relationship between
environmental conditions and the dynamics of channel quality

* Evaluate communications techniques compensating for time-
variability

* How to perform prediction of and adaptation to time-varying
conditions

* Impact of time-varying conditions, link lengths and resulting
performance of networking protocols
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amples of time-varying channel
conditions

Different SNR dynamics depending on scenario and environmental conditions
dominating propagation (KAM11 and SubNet09 water depth ~100 m -> ssp,

SPACEO08 water depth~15 m -> surface)
10 ‘ : : ‘ :

30

—— SubNet09
o
h=)
o
P4
7]
4
—+— SPACEO08|
87| kam11
2 : - : - : 5 y y y y -
0 0.5 1 15 2 25 3 0 20 40 60 80 100 120
time [min] time [min]
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pact of surface conditions on
very shallow UWA comms

Time series of Power Spectral Density (PSD) of

Wind Driven Surface Wave Energy

received energy 0.1
301 === N °
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Periodic behaviors were
observed in correspondence of
low wind driven surface energy

05 1
frequency [Hz]
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“Impact of time-varying channel
conditions on network performance

* Reactive (/adaptive)

networking protocols may be
affected by propagation
delays and time-varying link
quality

* Reactiveness of a protocol is a

decreasing function of the link
length

° However, time-varying

conditions trigger adaptation

* With such a study, we find the

maximum link length above
which reactive protocols do
not perform well
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e

ource routing vs floo
varying channel conditions

ing in time-

Cell side length, L [m]

denser deployments
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Cell side length, L [m]

Flooding is preferable in low density networks (large cell lengh), whereas
source routing outperforms flooding (at least in energy consumption) for
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""faﬁg advantage of time-correlated
behaviors: adaptation vs prediction

4. T T T T

* Time-correlated dynamics
enable predictability of
the channel quality

® Long propagation delays
make the Channel State
Information (CSl) outdated

® Therefore adaptive
1 : ; ; : : : techniques should include
lag, T [minutes] %
a learning phase and

Throughput, ©(t) [b/s/Hz]

Throughput as a function of feedback

delay in a variable-rate communication prediction
scheme.
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* Time-varying behaviors are observed in UW channels

® Dealing with them is important and challenging

* The UW channel is very difficult to characterize, but
recent results show some patterns (at least from a
networking perspective)

* Understanding these effects and their relationship with
environmental parameters is an emerging topic

® How to use this information will involve a mixture of
adaptation, prediction, and learning
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Conclusions

* Underwater networking is a very exciting and promising area

® Many challenges are still present, related to modeling,
propagation, proper tools for study, and design criteria

* Work has been done on protocols, but a lot remains to be done
® Conceptual studies still important, but need to be grounded

® Simulation and experimentation need to be carefully deployed

* Availability of open-source tools a key enabler for many groups

* Understanding channel behaviors and their environmental
causes is a very difficult problem, at the forefront of this area of
research
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* http://telecom.dei.unipd.it/underwater
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~ Further reading on our web site
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