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Abstract—In this paper we present a performance eval-

uation and feasibility test of SUN, a routing protocol for

underwater networks inspired to Dynamic Source Routing

(DSR), to which it adds several features that improve its

behavior in underwater environments. The evaluation has

been performed with real devices, and has been made

possible through a collaboration between the Department of

Information Engineering (DEI) of the University of Padova,

Italy and EvoLogics GmbH, Germany. In detail, the idea

put in practice in this work is to command real hardware,

i.e., the S2C acoustic modems of EvoLogics, by means of

the ns2/NS-Miracle engine developed and extensively used

primarily by research institutions. This approach favors

code reuse and speeds up the realization of flexible and

easily modifiable network prototypes.

Our results show that SUN can deal with typical net-

work issues such as the disconnection of a node and the

appearance of additional nodes, and that it copes well with

dynamic topology changes.

Index Terms—Underwater networks, dynamic source

routing, emulation, test-bed, DESERT Underwater, NS-

Miracle, ns2.

I. INTRODUCTION

Both academia and industry are showing interest in

underwater network applications, and in the implemen-

tation of research-level communication solutions on ac-

tual devices. Testing different network protocols and/or

physical layer solutions in real environments is seen as

a valuable way to provide a comprehensive study for the

realization of an effective communication technology. On

one hand, this activity strengthens the study, as it allows

researchers to support theoretic and simulation results

via experimentation; on the other hand, it may unveil

bottlenecks or practical issues that provide useful feed-

back for the design of reliable prototypes and, eventually,

commercial products. The work presented in this paper

moves in this direction by exploiting the integration of

the network simulator NS-Miracle [1] (an extension of the

well-known network simulator ns2 [2]) with the hardware

of the S2C acoustic underwater modems.

The S2C hydro-acoustic modem is a system developed

by Evologics [3] which exploits the Sweep-Spread Carrier

(S2C) technology for underwater data communications

and telemetry. It operates with two different frequency

ranges (18–34 kHz or 48–78 kHz) and can reach data

rates of up to 33 kbit/s. The S2C modem can transmit

acoustically up to 2 km (optionally up to 6 km) and

can operate at depths up to 100 m (optionally up to

6 km). The S2C modem can be controlled via direct

host/modem communication using the standard AT com-

mand set. Furthermore, it features the integration of the

NS-Miracle network simulator, so that we can also exploit

the DESERT Underwater libraries [4], [5] to control the

modem and to organize multiple S2C devices into an

underwater network.

DESERT Underwater is a set of public C++ li-

braries [5] developed by the Department of Information

Engineering (DEI) of the University of Padova; these

libraries use the engine offered by the NS-Miracle and

have been developed to support the design and imple-

mentation of underwater network protocols. The rationale

behind DESERT Underwater is that it should be possible

to evolve from simulations to the realization of actual

prototypes, by reusing the same software already written

for simulations to the largest extent. In this light, the

idea is to make it possible for NS-Miracle modules to

command acoustic modems. This approach favors not

only code reuse, but also the realization of flexible and

easily modifiable network prototypes (the software devel-

oped in DESERT Underwater is designed to be modular

and easily adaptable to different network configurations,

communication protocols and application scenarios).



2

Along with the modules that interface the network

simulator with real hardware, the DESERT Underwater

libraries provide modules that implement various com-

munication protocols at different layers of the protocol

stack. In this work, we focus on a network layer module

that implements SUN, a dynamic, reactive Source routing

protocol for Underwater Networks. According to this

protocol, the generation of routing paths can be performed

on-demand by the nodes in the network and based on

different criteria, such as the minimization of the hop-

count or the maximization of the minimum Signal to

Noise Ratio (SNR) along the links of the path. A detailed

description of the SUN protocol is provided in Section II.

The rest of the paper is organized as follows. In

Section III we describe the S2C acoustic modem hardware

and firmware protocol stack, and also present the S2CR

WiSE edition, a series of modems explicitly designed

to work with the ns2/NS-Miracle engine, that we used

for our field experiments. In Section IV, we detail the

DESERT Underwater module that implements the inter-

face between NS-Miracle and the S2C EvoLogics modem.

In Section V we present the evaluation of SUN performed

during real-world experiments. Section VI concludes the

paper.

II. THE SOURCE ROUTING FOR UNDERWATER

NETWORKS (SUN) PROTOCOL

SUN is a reactive source routing protocol developed

at DEI and inspired to the Dynamic Source Routing

(DSR) solution described in [6]. DSR is a routing protocol

specifically designed for wireless radio networks and the

typically high communication delays that characterize

the underwater acoustic channel may severely impair its

performance. The SUN protocol aims at overcoming such

difficulties and does not rely upon any centralized control

unit. Moreover, SUN can be exploited in both static and

mobile networks and is oblivious of the network topology:

so long as the network is connected, SUN does not require

any information about node locations or depths. SUN

has been designed as a reactive protocol, in order to

avoid wasting bandwidth with proactive route discovery

procedures.

The SUN protocol is explicitly designed for those

applications that entail the presence of two kind of nodes:

the sink nodes, that have to gather all the application

data generated in the network, and the sensor nodes,

that both generate and relay the information of interest

(e.g., sampled sensor measurements of some physical

phenomenon to monitor). Sink nodes are passive entities

that, according to the SUN protocol, perform only two

tasks: i) to periodically send probe messages in broadcast,

in order to notify their own presence to the nodes within

their communications range; ii) to receive data packets.

Sensor nodes, instead, can: i) generate and send data

packets; ii) request for available routing paths or start a

new path discovery; iii) answer path discovery requests;

iv) act as relays, i.e., forward incoming data packets

toward the chosen path, and v) notify routing problems,

such as the loss of contact with a sink or a relay.

Both sinks and sensor nodes communicate according

to the SUN protocol via six different packet messages:

1) Probe. The packet sent by the sink nodes to notify

about their presence. Sensor nodes that receive this

message understand to be one-hop neighbors of the

sink and are termed “end nodes” in what follows;

2) Path Establishment-Request. The messages sent by

source nodes to start, if necessary, the discovery of

a routing path when application data must be sent

over the channel;

3) Path Establishment-Answer. The messages used by

sensor nodes to reply to the Path Establishment-

Request messages in order to successfully establish

a complete route toward a sink;

4) Data. The packet containing the application data of

interest. Sensor nodes both generate and forward

packets of this kind; sink nodes, instead, can only

receive them;

5) Acknowledgment. The packets used to notify about

the correct reception of a Data packet over a point-

to-point link. This message can by sent by both

sensor and sink nodes;

6) Route Error. The packet messages sent by sensor

nodes to notify the data packet source about the

failure of a known path.

SUN is a source routing protocol. Hence, for each gen-

erated data packet, each source node completely specifies

the best route towards one of the sinks in the network.

This route is chosen according to a metric based on

local information provided by each relay. Currently, SUN

supports two metrics: the Lowest Hop Count and the

MaxMin Signal to Noise Ratio (SNR). Implementing a

very simple algorithm, the first metric allows a source

node to build the routing path with the lowest number of

hops thus reducing the number of relays involved in the

communication; however, maximizing the link distances

may translate into a decrease of the average SNR per link.

The second metric, conversely, is slightly more computa-

tional demanding and may lead to a higher exchange of

Path Establishment messages with a consequent increase

of interference among nodes. Also, this metric requires

the implementation of cross-layer messages to retrieve

at the network layer the SNR measured at the physical
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layer; however, MaxMin SNR usually leads to the creation

of more reliable routes maximizing the average SNR

per link. Which metric to use depends on the actual

application and network scenarios. Once selected, the

indication of the entire chosen route is reported in the

packet header, thus avoiding a hop-by-hop relay election

process. To enhance the protocol reliability, SUN also

implements the following additional features:

• an internal buffering mechanism, employed to store

data packets from upper and lower layers. In case a

valid path to the sink is not immediately available,

this system gives SUN the possibility of storing

packets, sending a Path Establishment-Request mes-

sage and waiting for an answer; when the node

receives such answer, it will remove the data packet

from the buffer, fill its header with a valid route and

send it over the channel. To avoid buffer overflow

problems, each stored packet is in any case removed

from the buffer if a valid route is not established

within a given amount of time (i.e., the packet

buffering timeout);

• a Stop-and-Wait Automatic Repeat reQuest (ARQ)

mechanism, that performs packet retransmissions at

the network level without delegating them to the link

control. This gives us the possibility to directly eval-

uate the state of the network, e.g., unreliable paths,

congested links, moving nodes, without implement-

ing specific mechanisms of interaction between the

data-link and routing layers, and therefore reducing

the complexity of the overall network protocol stack

(which is always desirable, especially in underwater

scenarios).

To sum up, the SUN routing protocol works as follows.

When a sink switches on, it starts the SUN protocol by

sending a probe to notify about its existence; probe mes-

sages can then continue to be sent periodically by each

sink in the network. All the sensor nodes that overhear

probe messages understand to be one-hop neighbors of

the sink1 and are called end-nodes. These nodes will

consider themselves as end-nodes as long as they will

be able to hear sink probes and, in any case, for only

a predefined period of time since the last probe heard.

When a sensor node generates a packet to transmit,

first it checks if a valid route towards a sink already

exists (e.g., it may be an end-node); if this is not the

1This is true if the channel is symmetric. Such condition, however,
is not necessarily met in practice; for this reason, according to SUN,
sensor nodes discard probes received with an SNR below a given
threshold. Through simulations conducted with the World Ocean
Simulation System (WOSS) [7], we verified that a SNR threshold
of 15 dB always ensured the existence of a return channel with good
quality.

case, the source node sends a Path Establishment-Request

message that is propagated over the network by all the

other sensor nodes, avoiding flooding. Eventually, such

Path Establishment-Request message reaches one or more

end-nodes that reply with Path Establishment-Answer

messages. Traveling back to the source node, the Path

Establishment- Answer messages collect all the necessary

local information to let the source node choose the best

route, i.e., relay nodes and corresponding metrics. Note

that the propagation of a Path Establishment-Request

message does not necessary terminate at end-nodes: if

an intermediate relay node already knows a path towards

a sink, it immediately replies to this message with a

Path Establishment-Answer. Once the route is chosen by

the source node, the data packet and the corresponding

routing information is forwarded toward the selected path.

Every established route remains valid for a predetermined

amount of time. If the SUN ARQ mechanism is also

enabled, each node of the selected route which receives

a data packet will reply back to its predecessor with an

Acknowledgement packet. Finally, when an ongoing data

flow is interrupted because of a link failure (i.e., either

a lost packet is detected or an end-node is not able to

hear sink probes anymore), the node that registers the

failure will send a Route Error packet to notify the source

node that will start a new path discovery procedure.

The explained mechanisms allow SUN to promptly react

and adapt to the variable conditions of the underwater

channel. In Section V, we report evaluation results of

such mechanisms in different real-world experiments.

III. THE S2CR WISE UNDERWATER ACOUSTIC

MODEMS

In this section we describe the modem hardware used

during the field experiments of Section V, namely the

S2CR White Line Science Edition (WiSE) underwater

acoustic modems. The S2CR WiSE series offers an open

environment for network protocol developers, providing

a flexible framework for testing new network protocols

and applications on real hardware. The WiSE modems

include a Linux virtual machine running on the modem’s

hardware, providing the user with a powerful tool to

develop and implement applications directly on-board the

modem. The main specific features of the S2CR WiSE

series are the following:

• easy access to the modem via SSH/FTP;

• communication via TCP/IP sockets between the vir-

tual machine and the modem firmware;

• a GNU GCC-based toolchain with C/C++ compilers;

• pre-installed tcl/expect interpreters for fast prototyp-

ing or algorithm customization;
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• inclusion of the ns2 and NS-Miracle network simula-

tors, as well as of the DESERT Underwater libraries

and the SUNSET framework [8], [9], both relying on

the ns2/NS-Miracle engine and explicitly designed

for underwater networking.

Generally speaking, instead, all the S2CR acoustic mo-

dem models manufactured by EvoLogics GmbH comprise

the following components:

• transducer with the transmit/receive amplifier, where

the physical properties of such transducer define

the beam pattern of the acoustic modem and the

frequency range;

• a digital stack, made of an analog-to-digital and a

digital-to-analog converters, a physical layer protocol

called S2CPhy and a data-link layer protocol named

D-MAC;

• optional ulta-short baseline (USBL) antenna, that

is a grid of 5 receivers and corresponding unique

amplifiers integrated together with the transducer

into one single housing;

• optional Wake Up module, that enables power saving

by turning on the rest of the device only when an

incoming acoustic message is detected, until the end

of its reception, or when a data packet has to be sent.

In what follows, we briefly overview two main com-

ponents of the digital stack: S2CPhy, which is imple-

mented in a Digital Signal Processor (DSP) and a Field

Programmable Gate Array (FPGA), and D-MAC, imple-

mented into an host-processor.

A. S2CPhy: the S2C physical layer protocol

S2CPhy implements the patented S2C (Sweep Spread

Carrier) signal modulation technique. S2C is based on

the assumptions that, for an underwater acoustic channel,

a received acoustic signal is well described by a sum

of multipath components with random amplitudes and

phases, and that the multipath intensity profile is discrete.

S2C method utilizes broad-spectrum signals with con-

tinuously varying frequency. After passing the under-

water acoustic channel, the received signal is a sum

of multipath components and, after matched filtering, it

can be presented as a series of time-shifted correlation

responses. For the S2C signal, these responses can be

isolated, eliminating the signal distortion associated with

multipath propagation. Moreover, the continuous varia-

tions of the carrier frequencies help in lowering the inter-

symbol interference generated by successive multi-path

components.

Differently from other common methods of digital

underwater acoustic communication, an S2C signal is

characterized by two levels of modulation: first, the

internal modulation, for continuous variation of the car-

rier frequency (analog modulation); second, the external

modulation, for coding the information within the signal

(via discrete signal manipulation).

With the frequency band ranging from one to tens of

kHz, the signal can be just hundreds of microseconds

long, and the transmission speed can reach tens of kbits

per second.

The key concepts of the S2C method are implemented

in S2CPhy to perform the following tasks:

1) estimation of the parameters of the underwater

acoustic channel (multipath intensity profile, peak

component, propagation delay and Doppler shift);

2) positioning

3) packet and symbol synchronization;

4) modulation and demodulation.

B. D-MAC: the S2C data-link layer protocol

D-MAC is based on the recently developed data deliv-

ery algorithms of the S2C acoustic modems and supports

two different types of data: burst data and instant mes-

sages, both detailed in the following.

Burst Data: Establishing a connection for burst data

delivery requires an estimation of the channel parameters.

As described in [10], the delivery algorithm optimizes

the channel utilization efficiency and adapts the bitrate

to the highest possible value for a particular underwater

acoustic channel. All data to be transmitted is buffered

and then dynamically split into smaller packets according

to channel parameters. The receiver reassembles the data

packet and sends it to the user in the original format.

Instant Messages: Establishing a connection is not

required for delivering instant messages (IMs). A fixed

bitrate (relatively low and acceptable for a wide range of

acoustic channel parameters [11]) is used to deliver short

IMs minimizing their delivery time. Moreover, exchange

of instant messages does not interrupt ongoing burst data

transmissions: IMs can be used as independent messages

or as an extension of service messages of the burst data

delivery protocol. An instant message can be hundreds

of bits long and the S2C physical layer protocol provides

reliable transmission of IMs with a 1 kbps bitrate. IMs can

be classified according to the message addressing type,

acknowledgment and synchronization requirements.

In the field experiments presented in Section V, nodes

communicate through asynchronous instant messages

whose delivery is based on an ALOHA-like scheme [12]

when there is no simultaneously ongoing burst data

exchange in the network. Further details on D-MAC and
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the classification of the difference messages supported by

the S2C modems can be found in [11].

IV. MS2C EVOLOGICS: A DESERT UNDERWATER

MODULE TO INTERFACE NS-MIRACLE WITH THE S2C

ACOUSTIC MODEMS

In this section we describe MS2C_EvoLogics, a

module derived from uwmphy_modem to implement

the interface between ns2/NS-Miracle and the S2C

acoustic modem presented in the previous section.

uwmphy_modem is a stand-alone module of NS-Miracle

that defines the structure in blocks, and corresponding

block functions, of a general interface between the NS-

Miracle network simulator and a generic real acoustic mo-

dem. In detail, uwmphy_modem is made of the following

components:

• the main block, implemented as the UMPhy_modem

class, that manages all the messages needed by NS-

Miracle (e.g., cross layer messages between MAC

and PHY layers) and contains all the simulation

parameters that can be set by the user, along with

the methods to change them;

• the block in charge of managing all the commu-

nications between host and modem (in both direc-

tion), which is implemented as the abstract class

UWMdriver;

• the block where to implement all the methods needed

to map an ns2/NS-Miracle packet into a legal modem

payload and do the reverse operation. The class

which implements this block is called UWMcodec;

• the block where to implement all the methods needed

to build or parse the string messages that must be

sent or that come from the modem, respectively.

The class which implements this block is called

UWMinterpreter;

• finally, the block that handles the actual physical

transmission and reception of messages to and from

the modem, respectively. The class which imple-

ments this block is called UWMconnector;

MS2C_EvoLogics specifies uwmphy_modem

for the S2C hardware and Fig. 1 sketches its

main components: MS2C_EvoLogics is a

class that derives UMPhy_modem, contains the

McodecS2C_EvoLogics object as well as the

MdriverS2C_EvoLogics object, and implements all

the linkages among the blocks (C++ objects) depicted

in the figure; the class McodecS2C_EvoLogics

derives UWMcodec and makes it possible to compress

into 29 Bytes (to be sent as payload of an modem

message) and decompress from them (into a new

NS-Miracle packet) all the information necessary to

UWMPhy_modem

McodecS2C_EvoLogics

MinterpreterAT Msocket

MdriverS2C_EvoLogics

MS2C_EvoLogics

Fig. 1. Illustration of the function blocks that form the
MS2C_EvoLogics interface.

run the SUN protocol with the NS-Miracle engine; the

class MdriverS2C_EvoLogics derives UWMdriver

and handles the exchange of messages between the

network simulator and the S2C hardware. To this end,

MdriverS2C_EvoLogics also contains two objects:

MinterpreterAT, that derives UWMinterpreter

to build and parse standard modem AT messages,

and Msocket, that derives UWMconnector and

implements a TCP/IP client to communicate with the

S2C acoustic modem.

Exploiting the MS2C_EvoLogics interface2 we have

been able to conduct real-world experiments by reusing

the same code prepared for simulation with the network

simulator NS-Miracle. These experiments are presented

and discussed in the next section.

V. FIELD EXPERIMENTS

In this section we present four field experiments that

have been conducted to test the recovery and adaptive

mechanisms of the SUN protocol in a real-world envi-

ronment. To this end, we deployed six S2CR WiSE Un-

derwater Acoustic Modems in the Werbellinsee lake, near

Berlin (Germany) according to the topology in Fig. 2. On

board of these modems we installed the ns2/NS-Miracle

engine and the DESERT Underwater framework, which

contains the MS2C_EvoLogics interface presented in

Section IV and all the necessary libraries to run, on each

modem, a complete network protocol stack; this stack

includes: for the application layer, a Constant Bit Rate

(CBR) traffic generator that, at the transmitter, injects

packets into the network according to a Poisson process

with given mean; for the transport layer, a User Data

2Like the SUN protocol, the source code of MS2C_EvoLogics
is part of the DESERT Underwater library [4], and can be freely
downloaded at [5].
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Fig. 2. Deployment of S2CR WiSE Underwater Acoustic Modems in
the Werbellin lake, Landkreis Barnim, Brandenburg, Germany. (Best
viewed in color.)

Protocol (UDP) and, for the network layer, the SUN

protocol presented in Section II. For the data link layer,

instead, the Media Access Control (MAC) actually used

is D-MAC, implemented as part of the modem firmware

as described in Section III.

Each deployed node could act as a transmitter, relay or

sink; changing the roles of the six nodes of the underwater

network in Fig. 2, we ran these four experiments:

1) Relay failure, which aims at testing SUN when a

route must be recovered after the failure of a relay

node;

2) Sink failure, which aims at testing SUN when a

route must be recovered after the failure of a sink

node, and when multiple sink nodes exist;

3) Sink detection, which aims at testing the behavior

of SUN when an additional sink node, placed in

a position that the adopted routing metric of SUN

considers more convenient, is discovered;

4) Mobile sink, which aims at testing SUN when

routes are disrupted because of the movement of

a mobile sink.

In all the above experiments SUN used the lowest hop

count metric to choose the best route; also its ARQ

mechanism (see Section II) has been enabled to enhance

point to point performance, allowing retransmission of

lost packets (the maximum number has been fixed to

one for all experiments, i.e., each data packet can be

sent at most twice over a given channel link before

being disregarded). A more detailed description of the

performed experiments and the corresponding results are

presented in the following.

A. Experiment 1: Relay Failure

In this experiment we consider one transmitter (node

1), one sink (node 6) and four relay nodes (nodes 2 to

5). At first, we force SUN to route packets through the

path 1-3-4-6, as illustrated in Fig. 3; practically, to do so

we both verified the connectivity throughout the desired

path and masked other possible existing connections using

ban-lists, i.e., by dropping packets coming from undesired

sources3 at each node. Successively, we cause the failure

of node 3 (thus disrupting the route already established

by SUN) and make a new route available, i.e., the route

1-2-5-6 as illustrated in Fig. 4. This experiment allows us

to observe the behavior of SUN in case of relay failure: in

Fig. 5 we indicate with circles packets that have been cor-

rectly sent from the transmitter to the receiver, both before

node 3 fails (white-filled circles) and after the recovery of

a new route (blue-filled circles); a vertical red-dashed line

indicates when the relay failure occurs. Both before and

after the relay failure, we have that packets are correctly

delivered to the sink with a delay that is between 9 and

40 seconds depending on the variable channel conditions

and the corresponding retransmissions required per link.

Furthermore, along the x-axis, we mark with crosses the

cases in which data packets are lost over the channel (i.e.,

the maximum number of transmissions has been reached

without success in one link of the chosen routing path)

and with diamonds data packets dropped by the SUN

protocol because of buffering timeouts (see Section II).

As a matter of fact, immediately after the node failure,

we can observe a packet loss and three packet droppings:

in this phase, in fact, the used path 1-3-4-6 has been

broken causing the packet loss; SUN reacted to adap-

tively discover a new route and this action required time

to exchange control messages (i.e., Path Establishment-

Request packets) that caused three buffering timeouts and

corresponding dropping of packets. Overall, to recover

from the relay failure SUN needed about 77.6 s. Note

that we have lost and dropped packets also in other three

circumstances: 1) at the beginning of the experiment we

have one dropped packet, caused by the buffering timeout

due to the time needed to create a valid route for the first

time (∼ 22 s); 2) throughout all the experiment, channel

conditions cause both packet losses and route disruptions

which, in turn, lead to dropped packets4; 3) at the end

of the experiment, where the bad channel conditions do

3This mechanism based on ban-lists is implemented in the
uwmphy_modem interface and, once the physical connectivity among
the nodes in the network is verified, allows us to have full control on
the logical network connectivity during all the performed experiments.

4In detail, it may happen, for instance, that a neighbor node of the
sink is unable to hear the sink probes for some time. If this time
exceeds a given threshold, a Route Error packet will be generated
and at the transmitter the established route will be considered no
longer valid. Consequently, a new path discovery mechanism will be
initiated by the transmitter and this may lead to buffer timeouts and
corresponding dropped packets.
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Fig. 6. Experiment 1: Relay Failure. SUN protocol overhead
observed along the experiment.

not allow the transmitter to recover a valid route before

completely emptying its buffer, therefore the simulation

concludes with a bundle of dropped packets. The overall

Packet Error Rate (PER) measured in this experiment is

0.42 (0.12 without considering dropped packets).

The protocol overhead observed during the experiment

is reported in Figure 6 where we divided the time axis

in slots of 30 s and for each time slot we compute the

ratio between the control packets and the total packets

observed in the network. In this figure, the overhead is

equal to one when only control packets are sent over the

network, i.e., i) at the beginning of the experiment, when

the routing path must be built for the first time, ii) in

correspondence of the node failure (event marked with

a red-dashed vertical line) when a completely new route

must be recovered and iii) at the end of the simulation,

when only the sink node remains active sending probe

messages. During the rest of the experiment, the number

of control packets are roughly the same as the data packet

(note that Acknowledgment packets are counted as control

packets, and at each Data packet sent ideally corresponds

one Acknowledgment packet): the overhead only increases

when the SUN protocol has to react to bad channel

conditions to effectively maintain a valid routing path.

B. Experiments 2 and 3: Sink Failure and Detection

The experiments presented in this section allow us to

test the SUN protocol when: 1) the source node has to

choose among multiple available routes according to the

metric in use (i.e., the lowest hop count metric in our

case); 2) multiple sink nodes exist and they can either
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Fig. 7. Initially available routes in Experiment 2 (Sink Failure) before
sink 3 fails; the routes are the same available at the end of Experiment
3 (Sink Detection), after sink 3 joins the network.

fail disrupting a valid routing path or appear enabling the

creation of a more convenient route. For these experi-

ments, we consider one transmitter (node 1), two sinks

(nodes 3 and 6) and three relays nodes (nodes 2, 4 and

5). Fig. 7 illustrates the routes that are set up through

ban-lists in Experiment 2, before one of the two sinks

fails as illustrated in Fig. 8. The same routes are available

in Experiment 3 when node 3 joins the network, whilst

before only one sink is switched on as illustrated in Fig. 9.

As expected, in both cases, when the two sinks are

simultaneously available, SUN picks the most convenient

route (i.e., the one with fewest hops) forwarding data

packets directly to node 3 as illustrated in Figs. 10

and 11 (white-filled circles). From these pictures we

see that picking the route with fewest hops causes, in

both experiments, a drastic reduction of the data packet

delivery time. Moreover, in Experiment 2, the failure of

the sink (event indicated by the red-dashed vertical line

in Figs. 10) that is gathering the data causes the loss of

a packet; however, SUN immediately recovers from such

failure by exploiting the alternative available path towards

node 6 (note that no dropped packets have been recorded

in this case). Differently, in Experiment 3, when node 3

joins the network (the red-dashed vertical line in Figs. 11

indicates when this event happens), the reception of probe

messages from this new sink and the time required to

determine that the new detected path is more convenient

lead to four buffer timeouts and corresponding dropped

packets5. In any case, the PER measured in Experiment 2

and 3 is 0.26 and 0.12, respectively (0.1 and 0.02 without

considering dropped packets).

5Future extensions of SUN will include a solution to resolve this
side effect of the buffing mechanism currently implemented.
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Fig. 8. Experiment 2: Sink Failure. Illustration of the node failure.

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

node 1

node 2

node 3

node 4

node 5

node 6

[m]

[m
]

 

 

TX

RELAY

SINK ON

SINK OFF

route: 1−2−5−6

Fig. 9. Experiment 3: Sink Detection. Illustration of the initial
conditions.

C. Experiment 4: Mobile Sink

With this last experiment we can observe the behaviour

of SUN in a hybrid network (namely, made of both fixed

and mobile nodes, see, e.g., [13]) by reproducing via ban-

lists the route disruptions as if the sink actually moved.

In detail, considering Fig. 12, we make the sink (node 6)

move counter-clockwise around the other deployed nodes.

Accordingly, the first available path from the transmitter

(node 1) to the mobile sink is through the relay node

5, then through node 3; when the sink approaches the

transmitter, instead, a direct path exists and when the

sink goes away again the two-hop available path uses

first the relay node 2 and, finally, node 4. In Fig. 13

we show the delay of the received packets, as well as

the lost and dropped packets during Experiment 4. All

the routing changes realized via ban-lists updates are

indicated with red-dashed vertical lines. In order, SUN

recovers from each route disruption after ∼ 116, 14, 74
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Fig. 10. Experiment 2: Sink Failure. Delay of the received packets,
lost and dropped packets.
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Fig. 11. Experiment 3: Sink Detection. Delay of the received
packets, lost and dropped packets.

and 63 s. The PER measured in this experiment is 0.21

(0.1 without considering dropped packets). Fig. 14 and

Fig. 15 illustrate, respectively, the protocol overhead and

the packet traffic (classified in probe, path request, path

answer, data, ack and path error packets) observed during

the experiment, dividing the time axis into slots of 30 s.

This experiment allowed us to asses the good adaptability

of SUN also in a dynamic network.

VI. CONCLUSIONS

In this paper we exploited the integration of the NS-

Miracle network simulator with the S2C acoustic under-

water modems to evaluate the SUN protocol in a real-

world scenario. First, we presented SUN, a dynamic,

reactive Source routing protocol for Underwater Network

and the S2C modem hardware. Then, we illustrate the

DESERT Underwater library designed to interface the

NS-Miracle simulator with real modems.

Thanks to the proposed approach, we have been able to

conduct several field experiments to test SUN in a real-

world environment. The collected results show that SUN

promises to be a robust and reliable tool for underwater

routing. Even more important, the performed real-world

experiments provided us with the necessary feedback for

further enhancements of the proposed protocol. This kind

of feedback can hardly be obtained through simulation

and observing the protocol operation in real-world sce-

narios provides invaluable insights.

We believe that this work represents an important

achievement to spur both academia and industry towards

continuing their joint activity for integrating research

solutions on actual devices, with the objective of realizing

prototypes and, eventually, useful and reliable products.
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