
Embedded Systems for Prototyping Underwater

Acoustic Networks: the DESERT Underwater

Libraries on board the PandaBoard and NetDCU

Ivano Calabrese‡, Riccardo Masiero‡∗, Paolo Casari‡∗,

Lorenzo Vangelista∗, Michele Zorzi‡∗

∗DEI, Department of Information Engineering, University of Padova, via Gradenigo 6/B - 35131, Padova, Italy
‡CFR, Consorzio Ferrara Ricerche, via Saragat 1 - 44122, Ferrara, Italy

E-mail: {name.surname}@dei.unipd.it

Abstract—In this paper, we consider underwater network
prototyping using the network simulation engine NS-Miracle,
and investigate different embedded computer boards that can
be employed for this task. In particular, we consider two
embedded platforms with considerably different capabilities: the
PandaBoard (a powerful platform that does not require any
cross-compilation effort) and version 5.2 of the NetDCU board,
which is much more constrained in terms of computational power,
RAM and storage space. After describing the steps required
to install NS-Miracle and the DESERT Underwater libraries
on board these platforms, we report on the field experiments
conducted to test the corresponding prototypes.

Our results include a comparison between the two investigated
platforms in terms of resources required (e.g., memory occupancy
and energy expenditure) and performance in the execution of
real-time software (e.g., slops introduced within the simulation
framework). We believe that our work represents an interesting
step towards the realization of underwater network prototypes
made of heterogeneous nodes.

Index Terms—Underwater prototypes, Embedded systems, NS-
Miracle, DESERT Underwater, PandaBoard, NetDCU 5.2.

I. INTRODUCTION

In the past few years, advances in robotics, acoustic modems

and control provided most of the key enabling technologies

for underwater applications. In this perspective, some of the

activities the underwater research community is focusing on

seek a complete solution for the network architecture and

the communications protocols that are required to tele-operate

underwater devices. When pursuing this goal, developers need

to easily simulate and prototype their protocol solutions, as

well as to share the obtained results and to allow others to

repeat the same experiments.

Recently, DESERT Underwater [1] has been proposed and

released as a flexible, publicly accessible tool for the design

and performance evaluation of underwater network protocols.

DESERT Underwater is a set of public C/C++ libraries [2]

for supporting the implementation of underwater network

protocols, by extending the NS-Miracle [3] simulation engine

which, in turn, is based on the well-known network simulator

ns2 [4].

The DESERT Underwater libraries implement several pro-

tocols for underwater networks, as well as a self-contained

module designed to interface NS-Miracle with real modem

hardware, thus enabling the realization of actual network

prototypes. In this work, we discuss about the feasibility of

portable, realistic testbed systems by using small platforms to

replace actual computers running the NS-Miracle engine to

control the modem hardware. In detail, we focus our study on

two platforms for mobile software development:

• the PandaBoard [5] (dual core 1 GHz ARM processor,

1 GB of RAM, SD/MMC card cage with support for

High-Speed and High-Capacity SD cards) which is based

on OMAP technology developed by Texas Instruments;

• the NetDCU 5.2 [6] (CPU Intel XScale PXA255 pro-

cessor of 400 MHz, 64 MB of RAM, no SD/MMC card

cage).

The PandaBoard is a powerful platform almost alike a normal

computer: for example, no cross-compilation is required to

prepare executables to be run on it. The latter, instead, is an old

version of the NetDCU board developed by F&S Elektronik

Systeme GmbH, which makes it possible to test our approach

on a very constrained platform.

The paper is organized as follows. In the next section we

present the main technical features of the PandaBoard and

of the NetDCU 5.2. The necessary steps to install ns2, NS-

Miracle and the DESERT Underwater libraries on these plat-

forms are detailed in Section III. In Section IV we describe the

real-world experiments conducted to test network prototyping

efforts based on these platforms, and report the corresponding

results in Section V. Finally, Section VI concludes the paper.

II. MAIN FEATURES OF THE PANDABOARD AND

NETDCU 5.2

The use of embedded devices is currently quite common in

telecommunications and in many other applications relying on

information technology. This tendency is correlated with the

technical improvements that embedded systems have gained

during the last past years (more powerful processors, smaller

form factors, lower power consumption, reduced costs).

The installation of one or more programmable processor

within a system leads to more flexibility compared to a fully

hardwired electronic system, and it may also translate into

reduced time for system design and prototyping. In addition,

it is easy to network several embedded systems to make

them operating together as part of a larger and scalable

system. This is why, for example, the latest car models have

about twenty micro-controllers [7] performing functions such

as anti-lock breaking system, fuel management, air-condition

management or GPS navigator. Also in underwater vehicles

(such as AUVs or ROVs1) and underwater acoustic modems,

embedded platforms can play a key role to, e.g., control

the movement of the vehicle or perform the modulation and

demodulation of the acoustic signal to be transmitted.

In this work, we consider two different embedded devices

for building prototypes of underwater acoustic networks made

of heterogeneous nodes: a PandaBoard and a NetDCU 5.2, see

Figure 1. Here, we define a network node as the ensemble of an

underwater modem, an acoustic transducer and the embedded

platform which commands the modem through the DESERT

Underwater framework. Accordingly, we define the network as

heterogeneous if its nodes differ in at least one of these three

components. For the experiments described in Section IV, we

use two identical modems commanded by different embedded

platforms. The main technical features of these platforms are

detailed in the following.

A. PandaBoard

In this work, we used the first version of the PandaBoard

platform family [5]. This device is a low-power, low-cost

single-board computer development platform based on the

Texas Instruments OMAP4430 [8], a powerful system-on-

chip (SoC) featuring a very good tradeoff between power

consumption and computational performance. Its processor

automatically balances operations across four main engines:

1) a programmable multimedia engine based on the TI’s C64x

DSP and power-efficient, multi-format hardware accelerators;

2) a general-purpose processor based on the dual-core ARM

Cortex A9 MPCore architecture, that supports symmetric

multiprocessing (SMP) and is capable of speeds of more

than 1 GHz per core; 3) a high-performance programmable

graphics engine and 4) an Image Signal Processor (ISP) for

video and imaging. The PandaBoard has 1 GB of low-power

DDR2 RAM and can fully support High-Speed and High-

Capacity SD flash cards. It supports Ethernet 10/100 Mbit for

wired connections, and both the 802.11 b/g/n and Bluetooth

standards for wireless communications. The considered device

has a size of 114.3 mm (height) × 101.6 mm (width), with

an overall weight of 74 grams.

B. NetDCU 5.2

The NetDCU 5.2, manufactured by F&S Elektronik Sys-

teme GmbH, dates back to October 2004. This board is

1An Autonomous Underwater Vehicle (AUV) is a robot which travels un-
derwater without requiring input from an operator, as opposed to a Remotely
Operated Vehicle (ROV) which is typically tethered.

Fig. 1. The embedded platforms considered in this study: the PandaBoard
(top) and the NetDCU 5.2 (bottom).

based on an Intel XScale CPU and on an additional Sil-

icon Motion graphic-processor SM501; its processor is a

400-MHz PXA255. The board featured a Flash-EPROM of

64 MBytes and a RAM equal in size. It supports both Ethernet

10/100 Mbit and a RS232 Serial interface. The considered

device has a size of 100 mm (height) × 80 mm (width), and

an overall weight of 60 grams. Even if nowadays this platform

is not the top gamma in the embedded system field, it used to

be a groundbreaking device, widely used and well suited to

the aim of this work.

III. INSTALLATION OF NS2, NS-MIRACLE AND DESERT

UNDERWATER ON BOARD THE PANDABOARD AND

NETDCU 5.2

We will now provide an overview of the steps required to

install the ns2 network simulator, its extension NS-Miracle

and the DESERT Underwater libraries2 on board both the

PandaBoard and NetDCU 5.2. These tools will allow us to

build our underwater network prototype.

As outlined in the the previous section, the two embedded

platforms that we consider are very different in terms of

technical specifications. In particular, the PandaBoard is a

powerful device that can be seen almost as a normal computer

(i.e., it can run a fully functional operative system such as

an Ubuntu Linux distribution): consequently, the procedure to

install ns2, NS-Miracle and DESERT Underwater is the same

as for any personal computer. Namely, once the necessary

source files have been downloaded from the corresponding

websites, one needs to:

1) install ns2 by running the corresponding installation

procedure;

2) install NS-Miracle using Autotools [9];

3) install DESERT Underwater using Autotools;

4) update the .bashrc configuration file for including

the paths where libraries have been installed, according

2The interested reader can find all the technical details of the installation
procedures followed for both the PandaBoard and the NetDCU 5.2 at [2].

to the indications received during the execution of the

previous points.

According to the above procedure, we installed all libraries

with minimum effort, using up an overall memory area (ROM)

of 142 MBytes (since the PandaBoard supports memory ex-

pansion through SD cards, this amount is much less than the

typical SD card capacity).

Conversely, the NetDCU 5.2 supports only a basic operating

system: therefore, the required executables can only be pre-

pared through cross-compilation. Moreover, the total amount

of Flash-EPROM size on this device is limited to 64 MByte

part of which should be left for other purposes. Therefore, the

above steps cannot be straightforwardly followed, but each of

them requires a particular attention and some “work-arounds.”

Specifically:

1) we install ns2 in two steps: first, we prepare the ex-

ecutables files for the Tcl interpreter tools (i.e., the

scripting language required by ns2 for parameter set-

tings); subsequently, we polish the ns2 libraries by

stripping off all applications that are not necessary for

our purposes (e.g., the graphical libraries). Since we are

cross-compiling, we also need to explicitly specify the

right compiler for the ARM architecture in use.3 At

this point, we encounter the main “work-around” of the

entire procedure. As a matter of fact, during the normal

installation of ns2, we generate four binary files (i.e.,

otclsh, tcl2c++, tclsh8.4 and ptypes2tcl)

that are necessary for the compilation and installation

of the overall framework: when we cross-compile, we

have to pay attention to have such libraries compiled for

the host that is performing the cross-compilation and not

for the targeted ARM architecture (as it would happen

if we straightforwardly proceed with the compilation of

ns2 for this latter).

2) install NS-Miracle using Autotools and explicitly specify

the right compiler for the ARM architecture in use;

3) install DESERT Underwater using Autotools and explic-

itly specify the right compiler for the ARM architecture

in use4;

4) update the profile configuration file as for the

.bashrc of the PandaBoard.

After the above procedure, all the necessary executables and

libraries for the NetDCU 5.2 are successfully installed and fit

in an overall memory area (Flash-EPROM) of 23 MBytes. By

using the strip command5 on these files, we have been able

to further reduce the required memory space for their storage

to 12 MBytes; the drawback of this operation is that the RAM

usage increases slightly, as shown in Section V.

3With the PandaBoard, this issue is handled directly by the PandaBoard’s
Operating Systems through symbolic links, and is therefore transparent to the
user.

4In this case we also have to do some minor modifications to the source
files of DESERT Underwater v1.0.0, that will be included in the next release.

5strip is a program that helps increase performance and reduce the overall
disk space usage by removing unnecessary content (e.g., debug information)
from both object and executable files.

IV. LABORATORY AND REAL-WORLD TESTS: SIMPLE

EXAMPLES OF HETEROGENEOUS NETWORKS

In this section, we illustrate and discuss the experiments

that have been conducted at the Department of Information

Engineering of the University of Padova to test the feasibil-

ity of underwater testbeds built using the PandaBoard and

NetDCU devices presented in Section II. According to the

proposed approach, these platforms have been exploited to

replace actual computers running the NS-Miracle engine to

control the modem hardware. In this perspective, we are

interested in monitoring the memory resources required to run

the framework and the energy expenditure of each platform. To

this end, we have written a piece of software called infoRAM6

that runs simultaneously with the network simulation process

(ns), and records the percentage of RAM and CPU resources

required by ns during any performed experiment. This evalu-

ation is interesting, as the network simulator ns2, its extension

NS-Miracle and the additional DESERT Underwater libraries

were originally designed and implemented for more powerful

computers. In addition, we have conducted some further

investigation on the delays introduced within the simulation

framework by each embedded platform, see Section V-B.

A. Protoype description

In our tests, we deployed two nodes configured as follows:

• a BTech BT-2RCL transducer [10];

• an FSK WHOI Micro-Modem [11], configured for the

25 kHz frequency range and working at a data rate of

80 bps;

• a PandaBoard or a NetDCU 5.2 running the DESERT

Underwater libraries to control the modem.

We have conducted both real-world [2] and laboratory tests.

During the first ones, we have placed the acoustic transducers

8 m apart in the Piovego channel, which flows nearby our de-

partment; in more detail, we put them at a distance of 2 m from

the bank, where the channel is 80 to 90 cm deep, with a muddy

bottom. For the laboratory tests, instead, we have placed the

transducers in a tank or we directly connected the embedded

platforms to the WHOI Micro-Modem Software Development

Board, which contains two modems (see Figure 2). In all cases,

we powered the Micro-Modems at 12 V, in order to decrease

their transmission ranges (when powered at 36 V, the FSK

WHOI Micro-Modems can reach a working range of up to

2 km horizontally and up to 9 km vertically [12]).

B. Test description

Overall, we conducted eight real-world tests (as well as

some preliminary tests performed in laboratory) in order to

assess the feasibility of prototyping underwater heterogeneous

network according to our approach. An overview of these

tests is reported in Table I: they realize all a point to point

communication between two heterogeneous nodes identified,

respectively, with the PandaBoard and the NetDCU 5.2. In

detail, using the engine of NS-Miracle and the DESERT

6The source code of infoRAM can be freely downloaded at [2].

Fig. 2. Hardware prepared for a laboratory test to be conducted with the
WHOI Micro-Modem Software Development Board (the black box on the
upper right corner of the picture).

Underwater libraries running on board the two embedded

platforms, each node has been fit out with a simple but

complete protocol stack (i.e., a User Data Protocol, UDP, for

the transport layer, a simple static routing protocol for the

network layer, and a Media Access Control, MAC, protocol

for the data link layer). At the transmitter, each data packet

is generated by a CBR application, namely a traffic generator

that injects packets in the network with a constant time period

or according to a Poisson process with given mean. In tests 1

to 4, both the PandaBoard and the NetDCU act as transmitter

or receiver, alternatively (simplex communication); in tests 5

to 8, instead, we make the two nodes transmit simultaneously

according to a random pattern (duplex communications). We

run the experiments by changing the CBR period (i.e., the

period between the generation of two subsequent data packets)

as reported in table I and, for the duplex communications, we

also tested the performance of two different MAC protocols:

the ALOHA [13] and the CSMA 1-persistent [14] protocols.

V. RESULTS OF THE PROTOTYPE TESTS

In this section we report the results of the tests described

in Section IV: we first discuss the real-world experiments

and the difference observed between the PandaBoard and the

NetDCU 5.2 in terms of resource usage; then, we compare the

impact of the two platforms on the event dispatcher of ns2.

TABLE I
OVERVIEW OF THE EXPERIMENTAL SETUPS

TEST PANDABOARD NETDCU 5.2

1
role: Transmitter role: Receiver
CBR period: 5 s CBR period: 5 s

MAC: ALOHA MAC: ALOHA

2
role: Receiver role: Transmitter
CBR period: 5 s CBR period: 5 s

MAC: ALOHA MAC: ALOHA

3
role: Transmitter role: Receiver
CBR period: 10 s CBR period: 10 s

MAC: ALOHA MAC: ALOHA

4
role: Receiver role: Transmitter
CBR period: 10 s CBR period: 10 s

MAC: ALOHA MAC: ALOHA

5
role: Transmitter/Receiver role: Transmitter/Receiver
CBR period: 5 s CBR period: 5 s

MAC: ALOHA MAC: ALOHA

6
role: Transmitter/Receiver role: Transmitter/Receiver
CBR period: 10 s CBR period: 10 s

MAC: ALOHA MAC: ALOHA

7
role: Transmitter/Receiver role: Transmitter/Receiver
CBR period: 5 s CBR period: 5 s
MAC: CSMA 1-persistent MAC: CSMA 1-persistent

8
role: Transmitter/Receiver role: Transmitter/Receiver
CBR period: 10 s CBR period: 10 s

MAC: CSMA 1-persistent MAC: CSMA 1-persistent

A. Feasibility of the Proposed Approach and Resource Usage

of the Embedded Platforms

Table II reports the observed packet error rate (PER) during

the tests of Table I conducted in the Piovego channel. We

can observe that, despite the adverse conditions (very shallow

water, wind-generated surface ripples and noise, proximity to

the bank, water turbidity), we have been able to successfully

transmit data in both the simplex and the duplex configura-

tions. This result allowed us to verify the feasibility of our

approach. Furthermore, exploiting the modularity of the NS-

Miracle framework, and therefore of the DESERT Underwater

libraries, we have been able to effectively compare (with only

minor modifications7) two different solutions for the MAC

layers: the ALOHA and the CSMA 1-persistent protocol. In

fact, when the generation rate of the data traffic is higher (i.e.,

a data packet generated on average each 5 s), we observe that

the PER is lower when 1-persistent CSMA access scheme

is applied (see test 7) with respect to the pure ALOHA

mechanism (see test 1); differently, when the traffic generation

rate is low (i.e., one packet generated on average each 10 s),

the two MAC protocols perform equally (see tests 6 and 8).

As previously mentioned, during the real-world tests we

have been monitoring the RAM and CPU usage in the Pand-

aBoard and in the NetDCU. We note that these metrics also

depend on the chosen protocol stack and on the performed ex-

periment: more complex protocols and scenarios likely result

in an higher CPU and RAM requirements. The investigation

of the resource usage in these cases is left as a future activity.

7As a matter of fact, we just needed to specify the actual module to use for
the MAC layer in one single line of the Tcl script written for the simulation
parameter setting.

Fig. 3. Percentage of RAM and CPU usage of the PandaBoard
(transmitter) in test 1 for the ns process. 50 data packets transmitted,
on average one packet every 5 s.

Fig. 4. Percentage of RAM and CPU usage of the PandaBoard (receiver)
in test 2 for the ns process. 50 data packets transmitted, on average one
packet every 5 s.

Fig. 5. Percentage of RAM and CPU usage of the NetDCU 5.2
(transmitter) in test 2 for the ns process. 50 data packets transmitted,
on average one packet every 5 s.

Fig. 6. Percentage of RAM and CPU usage of the NetDCU 5.2 (receiver)
in test 1 for the ns process. 50 data packets transmitted, on average one
packet every 5 s.

TABLE II
PACKET ERROR RATE (PER) OBSERVED DURING THE EXPERIMENTS IN

THE PIOVEGO CHANNEL

Simplex Communication

TEST 1 TEST 2 TEST 3 TEST 4

0.14 0.0278 0 0.028

Duplex Communication

TEST 5 TEST 6 TEST 7 TEST 8

0.53 0.04 0.3061 0.04

In Figures 3-6 we show the percentage of used RAM and

CPU for the PandaBoard and the NetDCU 5.2 during tests

1 and 2. In test 1, the PandaBoard was the transmitter and

the NetDCU 5.2 the receiver, vice-versa in test 2. From

the graphs we observe that the role of the nodes does not

strongly affect the overall resource usage of the two boards.

For both the RAM and CPU we observe a usage peak at

the beginning of the test, namely, when the simulation scripts

must be interpreted and the libraries are loaded: after this, the

RAM usage is almost constant for the whole duration of the

tests; concerning the CPU, instead, we observe an oscillating

behavior for the PandaBoard (between 0 and 8% of the total

CPU) and sparse spikes for the NetDCU 5.2. We believe that

this is due to the different process management performed

by the dispatcher and/or the CPU scheduler8 of the OS in

either of the devices. The percentage of used RAM, instead,

is clearly lower for the PandaBoard (∼ 1%) than for the

NetDCU 5.2 (∼ 14%). Counterintuitively, this is not only

due to the different amount of RAM available on each board.

In fact, consider Figures 7-10, which show the RAM usage

8The CPU or short-term scheduler is the OS engine that selects among the
active processes the one to be executed next; the dispatcher, instead, is the
module that actually gives control of the CPU to such selected process.

Fig. 7. RAM usage (in MBytes) of the PandaBoard (transmitter) in test
1 for the ns process. 50 data packets transmitted, on average one packet
every 5 s.

Fig. 8. RAM usage (in MBytes) of the PandaBoard (receiver) in test 2
for the ns process. 50 data packets transmitted, on average one packet
every 5 s.

Fig. 9. RAM usage (in MBytes) of the NetDCU 5.2 (transmitter) in test
2 for the ns process. 50 data packets transmitted, on average one packet
every 5 s.

Fig. 10. RAM usage (in MBytes) of the NetDCU 5.2 (receiver) in test
1 for the ns process. 50 data packets transmitted, on average one packet
every 5 s.

in MBytes for the two platforms in tests 1 and 2. Here the

step of the beginning of simulation is even clearer, but what

we can observe is that the mean RAM usage along the two

tests is slightly lower for the PandaBoard (around 7.5 MByte)

than for the NetDCU 5.2 (around 9 MByte). As previously

mentioned, we believe that this difference is due to the fact

that in the NetDCU 5.2 we compress the executable files and

libraries with the strip command requiring then more RAM

to balance the effect of such operation. Another important

observation is that, the RAM usage displays an increasing

trend when a board is used as a transmitter. This effect is

shown by both boards and is caused by the dynamic memory

allocation to the data structures of the packets: regardless of

when this memory is released within the code, the OS will

actually free it in bundles, in a manner that is transparent to

the running processes.

B. Impact of the embedded platforms on the real-time sched-

uler of ns2

In this section we show the results of the additional lab-

oratory tests that we carried out to study the impact of the

considered embedded platforms in terms of the possible delays

introduced within ns2. We recall that ns2 is an event-driven

network simulator: therefore, it is difficult to guarantee the

execution of scheduled operations in real time as, instead, it

would be desirable when we interface ns2 with real hardware

to realize actual prototypes. To this end, ns2 implements a soft

real-time scheduler which ties the execution of the simulator

events with the actual time, by regularly checking the evolving

simulation time against the system clock. From a practical

perspective, the difference between the evolving simulation

time and the corresponding system clock should be less than a

constant factor called “slop factor”, that can be set by the user.

If sufficient CPU resources are allocated to the ns2 process (as

it would generally happen with normal computers), the virtual

time of the simulator can closely follow the real-time evolution

and the simulation will run without problem; otherwise, ns2

outputs a warning message to notify the user that a given event

has not been executed at the scheduled time, i.e., the difference

between the simulation time and the system clock exceeded

the slop factor.

TABLE III
SIMULATION EVENTS EXECUTED WITH DELAYS ON THE PANDABOARD

AND ON THE NETDCU 5.2 (WITH A SLOP FACTOR OF 0.001 S).

PANDABOARD

of simulated # of delayed mean delay
events event executions delay covariance

494 387 0.3269 0.1295

2349 2338 0.1179 0.0019

20340 20276 0.0142 2.027e-06

NETDCU 5.2

of simulated # of delayed mean delay
events event executions delay covariance

494 10 0.0069 0.0235

410739 189 4.7366e-06 4.0958e-04

In Table III we compare the performance of the real-time

scheduler of ns2 on the PandaBoard and on the NetDCU 5.2.

We fixed the slop factor to 1 ms and varied the number

of events that the network simulator must handle (e.g., by

increasing the number of packet to sent or scheduling several

times the reading of a given data structure) and we measured

both the number of warning messages printed by ns2 (that

correspond to the number of events whose execution is delayed

more than the maximum slop set by the user) as well as the

mean and the covariance of the event execution delays with

respect to the corresponding scheduled times. Unexpectedly,

from this data we can observe how the PandaBoard has not

been able to guarantee the execution at the scheduled time

of almost all the simulator events (the number of printed

warning messages, and therefore of delayed event executions,

is always very close to the number of simulated events), even

if the corresponding mean delay is low compared to the typical

timing of the application (from 0.014 s to a maximum of 0.33 s

when the packet data transmission rate is of one every 5 s).

Conversely, the NetDCU 5.2 board guaranteed the execution

of almost all simulation events in time, with a percentage of

delayed events below 2% and with a smaller average delay

(less than 0.024 s). Such performance is related with the CPU

behavior already observed in Figures 3-6 and with the way

in which the OS of each platform allocates resources to the

active processes (i.e., if system resources are allocated more

often to the ns process, the real-time scheduler of ns2 can

better track the system clock). A possible solution to improve

the PandaBoard performance is the adoption of a Real-time

Kernel instead of the one [15] used in the pre-installed Ubuntu

distribution for the ARM/OMAP architecture [16], and also

used for this comparison. This activity is also left as a future

extension.

VI. CONCLUSIONS

In this paper we exploited embedded platforms running

the NS-Miracle network simulator for prototyping underwater

networks. In detail, we tested the feasibility of commanding

real modems by running the DESERT Underwater libraries

on board of diverse mobile platforms instead of on actual

computers. After describing the mean technical features of

the considered embedded devices (the PandaBoard and the

NetDCU 5.2), we reviewed the necessary steps to install ns2,

NS-Miracle and the DESERT Underwater libraries on board

the considered hardware and discussed the different approach

needed for each board.

Finally, following the proposed approach, we built a pro-

totype of heterogeneous underwater network and compared

the two investigated platforms by means of both laboratory

and real-world tests. We measured the memory occupancy,

energy expenditure and delays introduced within the adopted

prototyping framework. These tests allowed us to asses the

feasibility of the proposed approach and to understand how to

improve it in the perspective of realizing more complex and

reliable underwater network prototypes.

VII. ACKNOWLEDGMENTS

This work has been supported by the multi-national four-

year project “Robust Acoustic Communications in Underwater

Networks” (RACUN) under the EDA Project Arrangement

No. B 0386 ESM1 GC, and by the Italian Institute of Technol-

ogy within the Project SEED framework (NAUTILUS project).

The authors gratefully thank L-3 ELAC Nautik, Germany for

the loan of the NetDCU 5.2 board, that made it possible

to carry out this comparative study. Many thanks also to

Federico Beccaro, Achille Forzan and Moreno Zorzetto for

their precious help in the organization and realization of the

tests in the Piovego channel.

REFERENCES

[1] R. Masiero, S. Azad, F. Favaro, M. Petrani, G. Toso, F. Guerra, P. Casari,
and M. Zorzi, “DESERT Underwater: an NS–Miracle-based framework
to DEsign, Simulate, Emulate and Realize Test-beds for Underwater
network protocols,” in MTS/IEEE Oceans, Yeosu, Republic of Korea,
Jun. 2012.

[2] “The DESERT Underwater libraries - DESERT ,” Last time
accessed: August 2012. [Online]. Available: http://nautilus.dei.unipd.it/
desert-underwater

[3] “The Network Simulator - NS-Miracle,” Last time accessed: August
2012. [Online]. Available: http://dgt.dei.unipd.it/download

[4] “The Network Simulator - ns-2,” Last time accessed: August
2012. [Online]. Available: http://nsnam.isi.edu/nsnam/index.php/User
Information

[5] “PandaBoard,” PandaBoard’s Homepage, Last time accessed: August
2012. [Online]. Available: http://www.pandaboard.org/

[6] “NetDCU5.2,” Emlix’s Web site, Last time accessed: August 2012.
[Online]. Available: http://www.fs-net.de/cms/index.php?id=22&L=1

[7] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software engineer-
ing: the state of the practice,” Software, IEEE, vol. 20, no. 6, pp. 61–69,
2003.

[8] “OMAP4430,” OMAP4 platform’s Homepage, Last time accessed:
August 2012. [Online]. Available: http://www.ti.com/product/omap4430

[9] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor, GNU Autoconf,

Automake, and Libtool. Open Publication License, 2000, Last time
accessed: August 2012. [Online]. Available: http://sources.redhat.com/
autobook/

[10] “BTech Acoustics, LLC,” Last time accessed: August 2012. [Online].
Available: http://www.btechacoustics.com/

[11] “Woods Hole Oceanographic Institution,” Last time accessed: August
2012. [Online]. Available: http://www.whoi.edu/

[12] S. Singh, S. Webster, L. Freitag, L. Whitcomb, K. Ball, J. Bailey, and
C. Taylor, “Acoustic communication performance of the WHOI Micro-
Modem in sea trials of the Nereus vehicle to 11,000 m depth ,” in
MTS/IEEE Oceans, Biloxi, Mississippi, USA, Oct. 2009.

[13] N. Abramson, “Development of the ALOHANET,” IEEE Transactions

on Information Theory, vol. 31, no. 2, pp. 119–123, 1985.
[14] P. Casari and M. Zorzi, “Protocol Design Issues in Underwater Acoustic

Networks,” Elsevier Computer Communications, vol. 34, no. 17, pp.
2013–2025, 2011.

[15] “Ubuntu kernel for OMAP4,” Last time accessed: August 2012.
[Online]. Available: http://www.omappedia.com/wiki/Ubuntu kernel
for OMAP4

[16] “UBUNTU release: Texas Instruments OMAP4 preinstalled server
image,” Last time accessed: August 2012. [Online]. Available:
http://cdimage.ubuntu.com/releases/11.10/release/

