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Abstract—We propose a theoretical framework to evaluate
the expected throughput of underwater networks over an en-
semble of node topologies and propagation environments. The
analysis is based on the assumptions that the transmitters are
spatially distributed according to a Poisson point process, and
that the channel follows a Rayleigh fading distribution, with
a mean that is determined by spreading loss and frequency-
dependent absorption. We evaluate the probability of a successful
transmission, i.e., the probability that the signal-to-interference-
and-noise ratio at the typical receiver is greater than a given
threshold, and determine the maximum network throughput
density over the transmitter density and the operating frequency.
The theoretical results are validated using a realistic underwater
channel simulator based on ray tracing. It is demonstrated that,
for a number of practical scenarios, the theoretical and simulated
throughput match provided that the spreading-loss exponent
is appropriately fitted to the simulation scenario. Overall, the
proposed framework provides easy-to-obtain network throughput
results, which can be used as a complement or an alternative to
time-costly, deployment-dependent network simulations.

Index Terms—Underwater networks, throughput, transmission
capacity, Poisson point process, Urick model, ray tracing, Bellhop.

I. INTRODUCTION

The field of underwater (UW) networking has undergone

significant development in recent years and now encom-

passes a wide variety of applications [1]. Early research in

the field [2], [3], and later testbed deployments [4], have

demonstrated the feasibility of UW networks in practice.

Primarily, the attention of the research community has been

focused on physical-layer and hardware design, channel char-

acterization [1], as well as protocol design, comparison and

evaluation [5]–[8]. In contrast, only a limited number of

papers have addressed the analytical performance evaluation of

UW networks and the derivation of fundamental performance

limits. In this light, this paper presents a theoretical framework

for evaluating the throughput of UW networks, which does not
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depend on the deployment topology, and captures with closed-

form expressions the main effects of the UW propagation

environment on the overall network performance. The validity

of the proposed approach is confirmed via detailed ray tracing

simulations for various operational scenarios.

On the theoretical research front, [9] determined the

communication-bandwidth/distance relationship and the er-

godic capacity for a single UW link, using the empirical Urick

acoustic channel model [10]. In [11], the bandwidth-distance

relationship of [9] was employed to assess the tradeoff between

delay and energy consumption in multi-hop UW networks with

error control. The results in [9] were also extended in [12],

for an UW cellular network with frequency reuse, and the

tradeoff between the reuse factor and the maximum feasible

user density was evaluated. On the one hand, [12] captured

the fundamental tradeoff that exists between deploying more

nodes in the same area and the resulting network interference.

On the other hand, the assumption of a cellular structure is

restrictive in view of the fact that, in typical UW network

deployments, the node topology does not obey a particular

structure, mainly due to the difficulty and cost of placing nodes

at particular locations [13]. In [14], employing asymptotic

arguments, the authors showed that the amount of information

that can be exchanged by each source-destination link in an

UW network goes to zero as n−1/b, where n is the number

of nodes and b is the spreading-loss exponent. In the same

vein, [15] considered a multi-hop underwater network with

regular geometry and showed that nearest-neighbor routing

is order-optimal, if the carrier frequency scales appropriately

with the number of nodes. The drawback of [14], [15] is

that, although they reveal the scaling behavior of an UW

network, they do not provide the preconstants of the scaling

laws, which may vary widely depending on the channel and

network parameters.

In this paper, we take a different approach compared to the

aforementioned work. We consider an UW network where the

transmitters are randomly distributed in space according to a

homogeneous Poisson point process (PPP) of a given density.

This model has been widely employed for the performance

analysis of wireless radio networks; the reader is referred

to [16], [17] for a comprehensive overview of existing results

and an exhaustive list of references. The main advantages of

the model are its generality, since it allows us to consider an

ensemble of network topologies without being limited by a

particular configuration, and the analytical tractability of the

Poisson distribution.

We derive the success probability for the typical transmitter-

receiver (TX-RX) link over different TX locations and channel

gain realizations. The analysis is based on the assumption that
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the received power is exponentially distributed, with a mean

which depends on the spreading loss and frequency-dependent

absorption according to the Urick model [10, Ch. 5]. The

expression can be easily calculated numerically and captures

the dependence of the success probability on key parameters

such as the transmission distance, the spreading-loss exponent

and the operating frequency. We then maximize the network

throughput density over the TX density and the operating

frequency, and demonstrate that the throughput-maximizing

frequency is 2 to 4 times larger than the frequency which

maximizes the link signal-to-noise-ratio (SNR), providing up

to a seven-fold improvement in the respective throughput. This

is due to the frequency-dependent absorption of the interfering

signals, which allows for a higher density of transmitting

nodes. In addition, we calculate the maximum supportable

density of TXs such that a given constraint on the success

probability is satisfied, i.e., the transmission capacity of the

UW network [17]. The constraint expresses the stringency

of the link performance requirement and depends on the

application. Given the energy constraints of UW nodes, as well

as the large delay penalties associated with retransmissions,

imposing a constraint on the success probability and deriving

the respective transmission capacity are particularly relevant to

the operation of UW networks. Overall, the single-hop results

derived in the paper can be used as a starting point for the

analysis of multi-hop UW networks, as was done, e.g., in [18]

for the case of terrestrial networks.

The second part of the paper is devoted to the validation

of the analysis, by means of simulations of a realistic UW

environment performed with the Bellhop ray tracing soft-

ware [19]. We focus on a shallow UW network scenario at a

depth of 100m, for which it is demonstrated that the received

signal power distribution, over several realizations of the sound

speed profile (SSP), can in most cases be approximated as

exponential. First, a curve-fitting step is performed for a single

TX-RX link, wherein the spreading-loss exponent is selected

such that the empirical mean received power best matches

the one simulated with Bellhop. Then, employing the fitted

spreading-loss exponent, it is shown that the theoretical and

simulated throughput match for a wide range of transmission

distances and operating frequencies.

The remainder of the paper is organized as follows. In

Section II, we describe the theoretical system model in detail.

In Section III, we evaluate analytically the success probability

and the related network metrics, and in Section IV we provide

numerical examples. Our simulation campaign is described

in detail in Section V. Section VI concludes the paper and

discusses directions for future research.

II. THEORETICAL MODEL

We consider an UW network that consists of an infinite

number of TXs, which are distributed on the plane (d = 2
dimensions) or in space (d = 3) according to a PPP Φ = {x}
of density λ, where x denotes location. Each TX has a RX

at distance R > 0 and a random orientation, and transmits at

a constant power P (henceforth, the symbol R is reserved to

denote the distance between a TX and its intended receiver).

The more complicated case of random link distances can also

be handled and is presented separately in Section III-C. The

channel power gain at frequency f between a generic TX/RX

pair at distance r consists of (a) the distance-dependent term

r−ba(f)−r where, typically, b ≥ 1, and a(f) > 1 is the

absorption factor, and (b) fading h(f), where h(f) is assumed

to be exponentially distributed with unit mean (or
√

h(f)
is Rayleigh distributed1). The fading random variables are

spatially independent and identically distributed. Moreover,

we assume the presence of noise, which is additive with a

power spectral densityW (f). For generally accepted empirical

functionsW (f) and a(f), the reader is referred to [9], [10] and
the references therein.2 Henceforth, we refer to the distance-

dependent gain r−ba(f)−r as the “Urick model” and to the

parameter b as the spreading-loss exponent.

As in [12], [21]–[23], we assume narrowband transmission,

i.e., transmission in a “small” bandwidth δf around the carrier

frequency fo. Within δf , we assume that W (f) = W (fo),
a(f) = a(fo) and h(f) = h(fo) (where h(fo) is a random

quantity).3 In the following, the dependence of W and a on

fo is implied.

Without loss of generality due to the structure of the PPP,

let the RX of the typical TX be located at the origin. The

signal-to-interference-and-noise-ratio seen at this RX is

SINR =
hx0R

−ba−R

Wδf/P + I
, (1)

where I is the (normalized with respect to P ) interference

power

I =
∑

x∈Φ\{x0}

hx‖x‖
−ba−‖x‖, (2)

and hx denotes the fading coefficient between the TX located

at x and the RX; ‖·‖ is the norm of x; and x0 is the position of

the typical TX, which is excluded from the set of interferers.

We define the success probability, Ps, as the probability that

the SINR satisfies a predetermined constraint θ, i.e.,

Ps = P(SINR ≥ θ), (3)

over all TX topologies and fading realizations. Taking an

information-theoretic viewpoint, if SINR ≥ θ is satisfied,

and the noise, as well as the interference (given its power)

are assumed to be Gaussian, then a rate of log2(1 + θ)
(bits/symbol) is achievable. Similarly to the case of wireless

radio networks [16], we define the throughput density (or

density of successful transmissions) τ(λ) = λPs(λ), which
captures the tradeoff between the density of transmissions in

space and the individual link quality; the maximum TX density

1There exists experimental evidence that the Rayleigh distribution models
the medium-range shallow water channel accurately [20]. In any case, in
Section V it is demonstrated that this modeling assumption is not crucial, and
that the analysis predicts the simulated throughput even when the simulated
channel distribution departs from the exponential model.

2In this paper, we set W (f) as in [9, eq. (6)], and log10 a(f) =
(

40f2/(4100 + f2) + 0.1f2/(1 + f2)
)

/ 914.4 dB/m, as also imple-
mented in the Bellhop software [19].

3The case of wideband transmission can be handled by splitting the
available bandwidth in sub-bands and applying the analysis of Section III
to each sub-band. A more detailed analysis of the wideband case represents
a substantial extension and is left for future work.
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λε such that the constraint Ps ≥ 1 − ε is satisfied; and the

transmission capacity cε = λε(1 − ε), i.e., the throughput

density resulting from the maximum TX density under the

particular constraint. In the next section we obtain exact

expressions and bounds for Ps, τ(λ) and cε.

III. ANALYTICAL EVALUATION OF THE SUCCESS

PROBABILITY AND NETWORK METRICS

In order to evaluate the success probability defined in (3),

we follow the approach outlined in [16] for the case of wireless

radio networks. The main difference is the nature of the path-

loss model of UW signal propagation, which results in a

different expression for Ps.

A. Success probability

Since hx0 is exponentially distributed, Ps can be written

as [16, Eq. (9)]

Ps = exp

(

−
θRbaRWδf

P

)

LI

(

θRbaR
)

, Ps,nPs,i, (4)

where LI(s), s > 0, is the Laplace transform of the prob-

ability density function of the interference, and Ps,n, Ps,i

denote the success probabilities taking into account only noise

and interference, respectively. When P → ∞ (and all other

parameters are kept constant), the network is interference-

limited and Ps = Ps,i. Since Φ is a PPP, it is known that [24,

Eq. (2.2), p. 292] (see also [16, Eq. (8)])

LI(s) = exp

(

−

∫ +∞

0

Eh

[

1− e−shr−ba−r
]

λd(r)dr

)

,

(5)

where λd(r) , λcddr
d−1 and cd = Vol(Bd(0, 1)) is the

volume of the d-dimensional unit ball. For d = 2 we have

λ2(r) = 2λπr, and for d = 3 we have λ3(r) = 4λπr2. In
the extreme case where a = 1, i.e., there is no absorption,

LI(s) is defined as long as b > d [16]. This case corresponds

to a wireless radio network and has been well studied in the

literature [16]. In the following, we extend the analysis to

a > 1, which is pertinent to UW acoustic communication.

Since Eh[e
−sh] = (1 + s)−1, from the definition of Ps,i and

(5), we obtain

Ps,i = exp

(

−λcd

∫ +∞

0

drd−1

1 + rbar

θRbaR

dr

)

. (6)

The integral in the exponent does not have a general closed-

form expression, but can be written as an infinite series of

known functions, as shown in the following proposition. We

recall the definitions of the upper incomplete Gamma function

Γ(ζ, x) =

∫ +∞

x

tζ−1e−t dt, x > 0, ζ ∈ R, (7)

the Gamma function Γ(ζ) , Γ(ζ, 0), ζ > 0, the confluent

hypergeometric function [25, p. 1023]

1F1(ζ, ξ;x) =
Γ(ξ)

Γ(ζ)Γ(ξ − ζ)

∫ 1

0

tζ−1(1− t)ξ−ζ−1etx dt,

ξ > ζ > 0, x ∈ R, (8)

and the principal branch of the Lambert function W(x), x ≥
−e−1 [26], where W(x) is the unique solution of yey =
x, y ≥ −1.

Proposition 1 The success probability in the interference-

limited regime is

Ps,i = exp

(

−λcd

∞
∑

n=0

(−1)nAn

)

, (9)

where

A0 = R̄d +
dθRbaR

(log a)d−b
Γ(d− b, R̄ log a), (10)

An =
dR̄da−R̄n

d+ bn
1F1(d+ bn, d+ bn+ 1; R̄n log a)

+
d
(

θRbaR
)n+1

((n+ 1) log a)
d−b(n+1)

Γ(d− b(n+ 1), R̄(n+ 1) log a),

n ≥ 1, (11)

and

R̄ =
b

log a
W

(

log a

b

(

θRbaR
)1/b

)

. (12)

Proof: Denote the integral in (6) by I. Then

I = d

∫ R̄

0

rd−1

1 + rbar

θRbaR

dr+ dθRbaR
∫ +∞

R̄

(rbar)−1rd−1

1 + θRbaR

rbar

dr,

(13)

where R̄ is such that R̄baR̄ = θRbaR or

log a

b
R̄e

log a
b R̄ =

log a

b

(

θRbaR
)1/b

. (14)

Applying the Lambert function to both sides of this equation

results in (12). Employing the series expansion

1

1 + x
=

+∞
∑

n=0

(−x)n, |x| < 1, (15)

in (13) yields

I = d

∞
∑

n=0

(−1)n
(

θRbaR
)−n

∫ R̄

0

rd+bn−1arndr

+ d

∞
∑

n=0

(−1)n
(

θRbaR
)n+1

∫ +∞

R̄

rd−b(n+1)−1a−r(n+1)dr.

(16)

From (16), (7) and (8), we obtain (9)-(11).

Remarks on Proposition 1:

1. R̄ in (12) is the critical radius, defined as the distance at

which the power from an interferer (averaged over the fading)

is equal to (θRbar)−1, or R̄baR̄ = θRbaR. Alternatively, if
we ignore fading, any interferer within a ball of this radius

around the typical RX can cause an outage. By definition, if

θ ≥ 1, then R̄ ≥ R, and the equality holds for θ = 1. If
θ → ∞ (high-rate transmission) then R̄ → ∞. With respect

to the dependence of R̄ on the absorption factor, we have that,
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if a → 1, then R̄ → θ1/bR. For a → ∞, with the application

of de l’Hôpital’s rule, (12) results in

lim
a→∞

R̄ = lim
a→∞

b

log a
W

(

log a

b
(θRbaR)1/b

)

(a)
= lim

a→∞
ba

e−W( log a
b (θRbaR)1/b)

1 +W
(

log a
b (θRbaR)1/b

)×

×
(θRb)1/b

b

(

aR/b−1 +
R

b
aR/b−1 log a

)

(b)
= lim

a→∞

(θRbaR)1/b
(

1 + R
b log a

)

log a
b (θRbaR)1/b

= R, (17)

where (a) is due to the fact that the derivative of the Lambert

function is

W ′(x) =
e−W(x)

1 +W(x)
, x > e−1,

obtained by differentiating W(x)eW(x) = x with

respect to x, and (b) is due to the fact that

lima→∞ W
(

log a
b (θRbaR)1/b

)

= +∞.

2. Since the TX locations are obtained from a PPP, Ps,i in (6)

is equal to the probability that there are no TXs within a ball

of volume

Vd = cd

+∞
∑

n=0

(−1)nAn. (18)

3. Eq. (6) is defined for any positive value of b. In addition,

employing Campbell’s theorem [16], the mean interference

power at the typical RX is

E[I] = λcdd

∫ +∞

0

rd−b−1a−rdr

= λcddΓ(d− b)(log a)b−d, (19)

which is defined for b < d, while, for b ≥ d, E[I] = ∞,

due to the singularity of the path-loss law at the origin. Note

that, in the case of terrestrial radio networks with path-loss

law r−b, the mean interference power is always infinite [16].

The difference between the two systems lies in the absorption

factor a > 1, which, in the case of an UW network, ensures

that the contribution of the far-away interferers in the TX PPP

goes to zero exponentially with distance.

From Campbell’s theorem, we also obtain

E[Ifar] = λcdd

∫ +∞

R̄

rd−b−1a−rdr

= λcddΓ(d− b, R̄ log a)(log a)b−d, (20)

where Ifar is the total interference power from TXs located

outside the ball of radius R̄ around the typical RX. Conse-

quently, the second term in (10) is proportional to the ratio

of the average interference power from “far” interferers to the

average (over the fading) received signal power. From (9), (10)

and (20), a “first-order” approximation to Ps,i is therefore

Ps,i ≈ exp
(

−λcdR̄
d − θSIRfar

−1
)

, (21)

where SIRfar , R−ba−R/E[Ifar] is defined as the ratio of

the average received power over the mean power of the far

interferers.

In the following corollary, we obtain arbitrarily tight bounds

to Ps,i, that involve only a finite number of terms in the series

in (9).

Corollary 1 The success probability in the interference-
limited regime is bounded as

exp

(

−λcd

N
∑

n=0

(−1)nAn

)

< Ps,i < exp

(

−λcd

N−1
∑

n=0

(−1)nAn

)

,

(22)

for any even integer N > 0. Moreover

exp (−λcdA0) < Ps,i < exp

(

−
λcdA0

2

)

. (23)

Proof: For x ∈ (0, 1),

1

1 + x
=

N−1
∑

n=0

(−x)n +

+∞
∑

n=N

(−x)n.

However,
+∞
∑

n=N

(−x)n =
(−x)N

1 + x
≶ 0,

which is > 0 for N even and < 0 for N odd. Therefore, for

N even
N−1
∑

n=0

(−x)n <
1

1 + x
<

N
∑

n=0

(−x)n. (24)

From (24) and (13), we obtain (22), following the same

procedure as in the proof of Proposition 1. Eq. (23) is proved

similarly by employing the trivial bounds 1/2 < 1/(1 + x) <
1, for x ∈ (0, 1).
We close this section by deriving the limit of Ps,i for a →

∞.

Proposition 2 For the interference-limited success probability

defined in (6), we have that

lim
a→∞

Ps,i = e−λcdR
d

. (25)

Proof: It suffices to show that lima→+∞ I = Rd, where

I is defined in (13). Assuming θ ≥ 1, i.e., R̄ ≥ R, the limit

of the first term of (13) is

lim
a→+∞

(

∫ R

0

drd−1

1 + rbar

θRbaR

dr +

∫ R̄

R

drd−1

1 + rbar

θRbaR

dr

)

=

∫ R

0

lim
a→+∞

drd−1

1 + rbar

θRbaR

dr,

=

∫ R

0

drd−1 dr

= Rd,

since lima→∞ R̄ = R and the integrand is upper bounded for

all a > 0 by drd−1. Using similar arguments, the limit of the
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second term of (13) is

lim
a→+∞

aR
∫ +∞

R̄

(rbar)−1rd−1

1 + θRbaR

rbar

dr

= lim
a→+∞

(

∫ +∞

R

rd−b−1aR−r

1 + θ
(

R
r

)b
aR−r

dr

−

∫ R̄

R

rd−b−1aR−r

1 + θ
(

R
r

)b
aR−r

dr

)

=

∫ +∞

R

lim
a→+∞

rd−b−1aR−r

1 + θ
(

R
r

)b
aR−r

dr

= 0.

The case θ < 1 (R > R̄) can be handled similarly. This

concludes the proof of (25).

Proposition 2 implies that, in the limit of a large absorption

factor a, Ps,i is equal to the probability that there are no

interferers within a ball of radius R around the typical RX.

B. Network metrics

From the definition of τ(λ), (4), and Proposition 1, we have

τ(λ) = λ exp

(

−λVd −
θRbaRWδf

P

)

. (26)

Optimizing over the density of TXs λ, the optimal throughput

density is

τo =
1

Vd
exp

(

−
θRbaRWδf

P
− 1

)

, (27)

where Vd is as in (18). Similarly, from the definition of the

transmission capacity, we obtain that

cε = max

{

1− ε

Vd

(

− log(1 − ε)−
θRbaRWδf

P

)

, 0

}

.

(28)

Note that cε > 0 if

RbaR <
−P log(1− ε)

θWδf
.

If we solve over R, we find that the maximum supportable

transmission distance given ε is

Rmax,ε =
b

log a
W

(

log a

b

(

−
P log(1− ε)

θWδf

)1/b
)

. (29)

Beyond this value of R, the performance constraint cannot be

satisfied and the transmission capacity of the network is zero.

C. Random link distances

The analytical results derived in this section can be extended

to the case where the distance of each TX-RX link is randomly

drawn from a distribution. For ease of exposition, assume

that R takes values in a discrete set R = {R1, R2, . . . , RM}
with probabilities p1, . . . , pM , where

∑M
m=1 pm = 1. If the

operating frequency has a fixed value fo, then, similarly to

(26) the throughput density is

τ(λ) = λ

M
∑

m=1

pm exp

(

− λVd(Rm, fo)

−
θRb

ma(fo)
RmW (fo)δf

P

)

. (30)

where, with the notation Vd(Rm, fo), we have emphasized the

dependence of Vd on Rm and fo.
In the case where, for each link distance value Rm, a differ-

ent operating frequency fo,m can be selected, we may divide

the original network in M subnetworks, corresponding to the

different values of R, with densities λ1 = λp1, . . . , λM =
λpM (where λ =

∑M
m=1 λm). Then, the total network

throughput density can be found by adding the individual

throughput densities of the M subnetworks, i.e.,

τ(λ) = λ

M
∑

m=1

pm exp

(

− λpmVd(Rm, fo,m)

−
θRb

ma(fo,m)RmW (fo,m)δf

P

)

. (31)

IV. NUMERICAL RESULTS

In this section, we present a numerical example for the

parameter set d = 3, b = 1.5, θ = 10 dB, R = 1000m
and P/δf = 110 dB reµPa/Hz. Moreover, we performMonte

Carlo simulations over 20000 network topologies with 10

different fading realizations per topology, in order to verify

the validity of the expressions derived in Section III.

We first consider the interference-limited case. In Fig. 1,

Ps,i in (6) is plotted as a function of a for a TX density

λ = 0.01 nodes/km3. Ps,i is an increasing function of a and,

for large a, slowly approaches e−λc3R
3

≈ 0.96, as predicted in
Proposition 2. Since a(fo) is an increasing function of fo (see

footnote 2), increasing the carrier frequency fo improves the

interference-limited success probability. The bounds obtained

from (22) for N = 2, 4 are also plotted for comparison and are

shown to be reasonably tight. Moreover, for a > 10 dB/km
(corresponding to fo = 35 kHz), the approximation (21) is

within 7% of the exact Ps,i.

Since Ps,i increases in fo, (26) and (27) imply the existence

of a throughput-optimal frequency: as fo (or a(fo)) increases,
Vd decreases, i.e., the larger absorption factor allows for a

denser packing of transmissions, However, the useful signal

power also suffers from absorption, which is reflected in

the reduction of the SNR P a(fo)
−RR−b/ (W (fo)δf).

4 In

Fig. 2, τo (27) and c0.05 (28), optimized over the operating

frequency fo, are plotted as functions of R. The respective

optimal frequencies are shown in Fig. 3. For comparison, we

also plot τo evaluated at the frequencies which maximize the

SNR at each R. Note that the throughput-optimal frequency

is significantly higher for moderate transmission distances,

e.g., it is 65 kHz at R = 1000m, compared to the SNR-

optimal value of 20 kHz. The respective throughput, as seen

4The increase in fo also results in a small decrease of the noise power
W (fo) [9], but the absorption effect dominates.
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The exact curve is obtained by numerically evaluating (6) and the approxima-
tion corresponds to (21). The outer and inner bounds are obtained by setting
N = 2 and N = 4 in (22), respectively. (b = 1.5, d = 3, R = 1000m.)

in Fig. 2, is about seven times larger. As the transmission

distance increases, the network becomes noise-limited and the

gap between the different curves narrows. At R ≈ 3.5 km, the

frequency which maximizes c0.05 is equal to the frequency

which maximizes the SNR. Beyond this value of R, obtained

by (29), the constraint 1−ε = 0.95 on the success probability

is no longer feasible (i.e., the nominator of (28) is negative

for any value of fo) and the transmission capacity is zero.

V. MODEL VALIDATION WITH RAY TRACING SIMULATIONS

A. Section outline and methodology

In this section, we compare the theoretical results derived

in Section III against the outcome of network simulations,

where acoustic propagation is modeled using the Bellhop ray

tracing software [19]. In contrast to the heuristic model of Sec-

tion II, Bellhop accurately simulates real acoustic propagation,

allowing us to capture the impact of important environmental

parameters such as the sound speed profile (SSP) on the

network performance.

Network simulations with Bellhop are a very time-costly

affair, if the channel from each TX to the RX is computed

anew for every realization of the TX PPP and the SSP.

Indicatively, obtaining in this manner a throughput curve such

as those shown in Fig. 6 may take three to four weeks on a

2.93 GHz Intel Core2 Duo E7500-based machine. To bypass

this difficulty, we construct offline a channel database for a

range of TX-RX distances (in small increments) and different

SSPs; then, for each realization of the TX PPP and the SSP,

we quantize each TX position to the closest database distance.

The impact of quantization on the accuracy of the simulations

is negligible but the computational savings are very significant,

e.g., an initial four days is required to set up the database for

the particular simulation scenario considered in this section,

after which producing each simulation curve in Fig. 6 takes

less than ten hours.

The channel database is not only useful in speeding up

the Bellhop network simulations, but also in enabling the

comparison between the theoretical results of Section III and
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Figure 2. The curves “τo , opt. fo”, and “cǫ, ǫ = 0.05, opt. fo” correspond
to (27) and (28), optimized over fo for each R. “τo , SNR-opt. fo” is obtained
by setting in (27), for each R, the fo which maximizes the received SNR.
Note that imposing a constraint 1 − ε = 0.95 on Ps results in a less dense
UW network and in a throughput loss. The upper and lower bound curves are
obtained by setting N = 2 in (22) and optimizing the respective expressions
over fo. (P/δf = 110 dB reµPa/Hz, b = 1.5, d = 3.)
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Figure 3. Optimal operating frequencies vs. R, corresponding to Fig. 2.
Boosting the frequency for moderate transmission distances increases the
throughput density, as it results in the absorption of interfering signals, e.g.,
for R = 1000m, the throughput-optimal fo is 65 kHz as opposed to the
SNR-optimal fo which is 20 kHz. As seen in Fig. 2, this corresponds to
a seven-fold throughput increase (P/δf = 110 dB reµPa/Hz, b = 1.5,
d = 3.)

the network simulation results. In particular, we employ the

database in order to calculate the average channel gain (over

different SSPs) at each distance R, and then use a curve-

fitting procedure, in order to best match it to the empirical

gain R−ba(f)−R, by varying the spreading-loss exponent b.
The tuned b is substituted in the expressions of Section III

to compute the theoretical network throughput, which is then

compared with the outcome of the Bellhop network simulation.

In the rest of this section, we present in detail the steps

outlined above and the comparison between theoretical and

simulation results.

B. Simulation scenario and channel gain database

The chosen location of the Bellhop simulations is south

of the Elba island in the Tyrrhenian sea, with coordinates
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Figure 4. (a) Average May SSP taken from the WOD 2009 database, for a
100m-deep location in the Tyrrhenian sea at (10.5◦E, 42.5◦N). (b) Channel
power gain in dB obtained using Bellhop. The TX (marked by a cross on
the left side of the picture) is at a depth of 95m and the frequency is fo =
50 kHz. Darker shades of grey correspond to a weaker signal.

(10.5◦E, 42.5◦N). The sea floor is at a depth of 100m, and the

nodes are all situated at a depth of 95m, which is a deployment

typical of a bottom-monitoring network. (However, such a

planar deployment is also common for floating devices that

monitor environmental parameters at smaller depths [27].) The

TXs are located within a disc of radius 5000m,5 and the RX

of interest is placed at its center, with its respective TX at a

distance R and an arbitrary orientation.

We first create a baseline configuration file for Bellhop

which contains all the simulation and environmental parame-

ters. The sea surface and bottom are approximated as flat, the

geo-acoustic parameters of the bottom sediments are taken

from the Deck41 database [28], and the average May SSP

from the 2009 World Ocean Database (WOD) [29], shown in

Fig. 4(a), is selected. We set the number of rays to be traced

to 120000,6 with angles of departure from the TX ranging

from −89◦ to +89◦. Based on the path that it follows, each

ray has a given amplitude and phase at the RX, and the total

received power is computed by taking the squared norm of

the subset of rays which carry significant power to the RX

position. (More details on how this set is determined can be

found in [30, Ch. 3, Section 3.5.2].) In Fig. 4(b), a snapshot

of the channel gain, i.e., the ratio of the total received power

over the TX power, throughout the water column is depicted.

The mild downward refraction is due to the shape of the SSP

in Fig. 4(a).

For a fixed SSP and RX location, the channel gain for a

TX at distance R is deterministic, and does not depend on

the TX orientation due to the circular symmetry which results

from the flat sea surface and bottom. We generate an ensemble

of 5000 channel gain realizations by simultaneously adding

small displacements to the SSP at depths 0, 10, 20, 30, 50, 75
and 100m (standard depths in WOD [29]), which are drawn

independently and uniformly from the interval [−4,+4]m/s.7

5For the range of transmission distances in this section, the interference
from nodes farther than 5000m can be neglected.

6This is more than twice the minimum number of rays required by Bellhop
to achieve satisfactory accuracy.

7Such displacements were observed during the SubNet’09 trials in the
Tyrrhenian sea [31]. Note that the small displacement range preserves the
downward-refractive behavior of the channel.

A database of channel gain realizations is created by repeating

this procedure for all TX distances from 10m to 5000m in

increments of 10m. The role of the database is to speed up

the Bellhop network simulations described in Section V-D.

Moreover, it is used to fit the empirical channel gain of the

Urick model to the average simulated gain, by appropriately

tuning b, which is described in the following.

C. Tuning the spreading-loss exponent b of the Urick model

The comparison between the theoretical and simulated

throughput is meaningful only if, for a given R, the empirical

gain R−ba(f)−R of the Urick model is comparable to the one

simulated with Bellhop. In Fig. 5, the simulated average gain

(obtained by taking the average of the channel gain over all

SSP realizations for each R) is plotted vs. R for f = 20,
50 and 90 kHz. As expected, the curves are steeper as f
increases, due to the larger signal absorption. The average

gain obtained with the Urick model is also plotted vs. R,

where, for each frequency, b is selected such that the Urick

gain fits the simulated one in the least squares sense.8 The

small discrepancies observed in each curve pair are due to the

inability of the Urick model to capture specific environmental

effects, e.g., the strong insonification of the sea bottom due

to the downward refraction, or the local interference patterns

originated by the interaction of the direct propagation path

with surface bouncing paths carrying comparable power. For

all frequencies, we note that b is larger than the “practical

spreading factor” 1.5 introduced in [9] and used in many shal-

low water network simulation studies, which is in accordance

with the statement in [10, p. 102].

D. Bellhop network simulations and comparison with theoret-

ical results

For a given PPP density λ and typical TX-RX link distance

R, the success probability at RX, defined in (3), is evaluated

by comparing the SINR with the threshold θ = 10 dB for

4000 realizations of the TX PPP, and 5000 realizations of

the SSP generated as described in Section V-B. For each

realization of the TX PPP and the SSP, the distance of each

interfering TX from RX is quantized with a precision of 10m,

and the respective database entry is invoked to determine the

channel gain between that TX and RX. In this manner, the

channel gain database can be invoked repeatedly across dif-

ferent topology and SSP realizations. The simulated network

throughput is calculated as the product of the TX density

and the simulated success probability. The theoretical network

throughput is determined by (26), employing the fitted value

of b, obtained as described in Section V-C. As in Section IV,

we set P/δf = 110 dB reµPa/Hz. We consider R and fo in

the ranges 800− 1500m, 20− 90 kHz, respectively.
In Fig. 6, the theoretical and simulated throughput densities

are plotted vs. λ for R = 1000m and fo = 20, 50 kHz. The
shape of the curves is typical of random-access (ALOHA)

8Whereas a(f) is an empirical function precisely determined in the
literature [9] and simulation software [19], existing guidelines for selecting
the value of b are rather vague. We therefore chose to tune b to achieve the
fit and left a(f) unchanged.
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Figure 5. Average power gain in dB vs. R for fo = 20, 50, 90 kHz, using
Bellhop simulations and the Urick model. The Urick curves are obtained by
least-squares fitting with the simulation results. The “valleys” observed in the
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Figure 6. Theoretical and simulated throughput density vs. λ for fo =
20, 50 kHz at R = 1000m. The Bellhop simulation results match the
theoretical throughput satisfactorily, for the fitted values of b.
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Figure 7. Theoretical and simulated throughput density vs. λ for fo =
50 kHz and different values of R. The maximum throughput increases for
decreasing R as attenuation of the useful signal decreases. The match between
the simulation and theoretical results (obtained for b = 1.750) is good at
R = 800, 1000, 1500m, while at R = 1200m, the theory overestimates the
simulated throughput.

systems, i.e., for small λ, τ(λ) increases linearly in λ, while,
for large λ, it decreases exponentially, and the maximum

occurs at the density λo = V −1
d . We observe a very good

match between theoretical and simulation results, with only a

slight overestimation of the throughput density by the theory

in the descending portion of the curves.

In Figs. 7 and 8, the theoretical/simulated throughput den-

sities and respective success probabilities are plotted vs. λ
for fo = 50 kHz and different R. The plots confirm the

overall agreement between theory and simulation, except in

the case of R = 1200m, where the theory overestimates the

simulated success probability and the throughput. These results

are explained in Fig. 9, where the histogram of the simulated

gain is plotted for R = 1000, 1200, 1500m. The exponential

distribution provides a satisfactory fit to the histogram for

R = 1500m. In the case of R = 1000 m, the peaks in the

vicinity of 40×10−9 disagree with the exponential model. Yet,
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Figure 8. Theoretical and simulated success probability vs. λ corresponding
to Fig. 7. The Bellhop simulation results are in good accordance with the
theoretical results, except for R = 1200m where the theory overestimates
Ps.

since the peaks occur at gain values larger than θW (fo)δf/P ,

they do not affect the noise-limited performance of the typical

link, thus the simulated success probability and throughput

follow closely the theoretical ones, as seen in Figs. 7 and 8.

In contrast, for R = 1200m, the peak occurs at 10 × 10−9

which is slightly less than θW (fo)δf/P , resulting in a smaller

success probability and throughput density. This “shadowing”

effect is attributed to destructive interference between the

direct arrivals, the bottom bounces and the surface bounces

occurring in the range 1200 − 1400 m, as also shown in

Fig. 5. The main conclusions from these observations are that

(a) the match between theory and simulation is not crucially

dependent on the exponential fading assumption, provided that

the typical link does not experience shadowing, and (b) even

when this is the case (as for R = 1200m), the discrepancy is

independent of the TX density, hence the maximum simulated

and theoretical throughput still occur at the same TX density,

as shown in Fig. 7.
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exponential distribution has been fitted to the histograms. The fit is good for
R = 1500m but unsatisfactory for R = 1000, 1200m due to the presence
of peaks in the vicinity of 40× 10−9 and 10× 10−9, respectively. For R =
1200m, these peaks are lower than the value θW (fo)δf/P ≈ 11 × 10−9 ,
which yields a success probability smaller than the theoretical one, as seen
in Fig. 8.

The results presented so far demonstrate that the theory

accurately predicts the simulated throughput for a wide range

of parameters, provided that b is appropriately selected. There-
fore, a semi-analytic method can be followed in order to

compute the network throughput for given R, λ and fo, in
the realistic acoustic propagation environment of Bellhop,

consisting of the following steps: (a) constructing the database

of channel realizations for a single TX-RX link as in Sec-

tion V-B, (b) selecting b using said database, as described

in Section V-C, and (c) calculating τ(λ) from (26) for the

selected b. As an indicative example, this procedure is applied

to select the throughput-optimal fo for R = 1000m. In

Fig. 10, τ(λ) is plotted vs. λ for different frequencies in the

range 20− 70 kHz. The maximum throughput is shown to be

achieved at λ∗ = 0.15 nodes/km2 and f∗
o = 50 kHz, which

is confirmed independently by the network simulations with

Bellhop. The discrepancies between theoretical and simulated

throughput are due to channel mismatch issues similar to those

described in the previous paragraph, which, nevertheless, do

not impact the optimal operating point (λ∗, f∗
o ) yielded by the

semi-analytic procedure.

VI. CONCLUDING REMARKS

We proposed an analytical framework to evaluate the

throughput of UW networks, taking into account the char-

acteristics of the UW channel and the dependence of the

interference power on the TX locations. The analysis is based

on the assumptions that the TX locations are drawn from

a PPP, a model that has been employed widely for the

performance analysis of wireless radio networks, and on an

empirical underwater channel model used in many existing

works to date. We obtained easy-to-calculate expressions and

bounds to the success probability, the throughput density

and the transmission capacity, which capture the effect of

salient parameters such as the spreading-loss exponent and the
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Figure 10. Theoretical and simulated throughput density vs. λ for several
values of fo (in kHz) at R = 1000m. For each fo, b is selected as described
in Section V-C. The maximum theoretical throughput density occurs at λ ≈
0.15 nodes/km2 and fo = 50 kHz, which is confirmed independently by
the network Bellhop simulation.

carrier frequency. Numerical results showed that, for moderate

transmission distances, boosting the carrier frequency yields a

significant throughput gain, since the benefit of the absorption

of interfering signals outweighs the loss due to the absorption

of the intended signal.

The analysis was validated with extensive simulations for

a shallow-water network scenario. Using curve-fitting, the

spreading-loss exponent in the empirical model was selected to

achieve the best match between the mean empirical and sim-

ulated received power for a single TX-RX link. The obtained

spreading-loss exponent was then substituted in the theoretical

expressions, which predicted the simulated throughput with

satisfactory accuracy. Following this semi-analytical approach

instead of performing a full-blown Bellhop network simulation

results in a reduction of the simulation time from several

weeks to just a few hours.

Although the simulations were performed at a particular

location, our approach can be applied to other shallow-water

locations, as long as b is fitted appropriately. Moreover, the

case of 3D networks can be accommodated, provided that a

channel database that also includes various depths is created.

In general environments, e.g., deep-water, a channel modeling

study is required to determine the statistics of the received

power. If such information is available, the analysis of Sec-

tion III can in principle be modified to accommodate other

empirical models and fading statistics. The extension of the

results presented in the paper to a wideband channel or to the

multi-hop scenario is left for future investigation.
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