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Abstract—We present an open source framework that makes it
possible to remotely monitor and control a heterogeneous network
of underwater acoustic nodes. The framework exploits acoustic
communications to deliver control messages, and thus avoids
the need to deploy cabled or wireless connections to control
each node. The framework has been developed with the goal
to provide a ready-to-use, lightweight, robust and reliable tool
for real field trials. The framework is very cheap in terms of
hardware resources and is easily portable on several embedded
systems because it is not necessary to recompile it. Furthermore,
RECORDS embeds features developed to manage in real time net-
work experiments by using the DESERT Underwater framework,
based on the well-known ns2/NS-MIRACLE network simulator.
RECORDS has been validated successfully in several laboratory
experiments and sea trials involving different embedded systems
arranged into several network topologies, including one major sea
trial conducted in collaboration with the NATO STO CMRE.

Index Terms—Underwater networks; remote control frame-
work; Tcl; expect; embedded systems; tank tests; sea trial.

I. INTRODUCTION AND RELATED WORK

During sea trials involving underwater acoustic networks, it

is important to acquire real-time information about the status

of the network, such as the signal-to-noise ratio of a given link,

the residual battery level of a node, or the disk space available

in an embedded system. The availability of such information

is fundamental to effectively characterize the network setup, as

well as to improve the design of the experiments. Gathering

such information in real time during the trial makes it possible

to quickly explain network events and unexpected behaviors.

In addition, such information allows the operator to reconfigure

the nodes and the experiments according to the status of the

network. This way, the most convenient experiment can be

chosen among several options prepared a priori, as a function

of the current status of the deployment. This can be easily

achieved whenever a reliable cabled or wireless connection

to all nodes is available. However, in a large-scale scenario,

providing such connections requires a significant effort, when

at all feasible. Moreover, it is often impossible to access all the

nodes of an underwater network after its deployment, especially
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in networks of large size. In fact, it may be necessary to

have nodes such as buoys or Autonomous Underwater Vehicles

(AUVs) run on battery power, and to leave them in the water

for the longest time during a sea trial. For all reasons discussed

so far, alternative means of remote control must be employed.

In this work, we present and demonstrate a robust, versatile

and reliable solution to this issue, that can be employed to

control the whole network whenever direct access to at least

one node is available throughout the experimental campaign.

The solution proposed gives the possibility to send remote

commands over multihop networks, to ultimately run under-

water networking experiments via the DESERT Underwater

framework [1], [2].

RECORDS (short for remote control framework for under-

water networks) is the evolution of the framework presented

in [3] and successfully employed in two sea trials since

then. Both RECORDS and the framework in [3] are written

using scripting languages and feature a modular structure with

loopback socket communications among different modules, but

the latter has several limitations compared to RECORDS: it

is based on a master/slave approach, that consequently divides

the nodes in two categories and forces the user to be in control

of a master node; it provides only a static routing protocol;

it was designed as a monolithic solution, which is simple but

less flexible than RECORDS’s multilayer stack; it offers lim-

ited functionalities beyond the remote start/stop of networking

experiments. In any event, the master/slave approach in [3] was

successfully used in two sea trials, namely the test of the SUN

routing protocol in the Werbellin lake, Berlin, in 2012 [4] in

collaboration with EvoLogics GmbH [5], and the CommsNet12

sea trial campaign, conducted in the proximity of La Spezia,

Italy, in collaboration with the NATO STO Centre for Maritime

Research and Experimentation (CMRE). Some results obtained

during the latter trial are reported in [6].

The network reprogramming function was also demonstrated

during the Sea Trial 2 of the RACUN project, a multi-national

EDA initiative aimed at providing robust and reliable commu-

nications in underwater networks. A specific command coded

via the Generic Underwater Application Language (GUWAL)

was broadcast using the GUWMANET routing protocol [7] in

order to reconfigure the network layer of the nodes, including

switching from a stand-alone network protocol implementation

to protocols programmed in the DESERT Underwater frame-

work [1], and vice-versa. Other commands made it possible to

change modem-related parameters both locally and remotely.

A third solution to remotely configure and control the ex-



periments in an underwater network where there is no direct

access to all the nodes, called backseat driver in the following,

or BD for short, has been presented in [8], but has not been

publicly released so far. The BD is programmed using the

SUNSET framework [9] and based on ns2/NS-MIRACLE [10].

When the BD receives a control message, it interprets the user

command in order to configure and start a second instance

of SUNSET, which in turn will run the proper networking

experiment. The backseat driver in [8] has similar features

compared to RECORDS (e.g., no prior knowledge about the

network is required; unicast, multicast and broadcast mes-

sages are supported; no master/slave hierarchy is assumed).

However, the two approaches are different in several ways.

For example, RECORDS is written entirely using scripting

languages, which are very easily ported on different embedded

systems, whereas the BD requires to cross-compile and install

ns2, NS-MIRACLE and SUNSET on every node, including

those controlled by embedded systems; our approach makes

it possible to develop and debug the software directly on the

embedded system; the configuration of RECORDS can be fully

or partly modified at run time via remote commands; finally,

RECORDS makes it possible to interact with an attached

modem via native modem commands, and can remotely execute

general purpose shell commands and retrieve their output. In

fact, starting networking experiments also requires no more

than a shell command, and leverages on the same functionality.

Recently, the SeaLinx framework for underwater acoustic

networks was presented in [11]. The framework has a layered

architecture including the MAC, network, transport and appli-

cation layers, which communicate via sockets. An application

layer module named Acoustic Remote Control (ARC) runs

permanently on the nodes and makes it possible to send remote

commands acoustically, similar to what happens in RECORDS.

However, [11] does not specify whether Sealinx allows the

user to reconfigure the networking protocols. SeaLinx is also

unavailable to the community as of today.

To the best of the authors’ knowledge, the solutions [3], [7],

[8], [11] discussed above, and the one presented in this paper,

are the only ones specifically designed to remotely control

and command underwater acoustic networks. The RECORDS

software is open source, and can be freely downloaded at [12].

The rest of the paper is organized as follows: in Section II

we explain the architecture of RECORDS and the functions

of each module. In Section III we evaluate the framework by

presenting experiments performed in our test bed and at sea.

Section IV concludes the paper.

II. THE RECORDS FRAMEWORK

A. Framework Description

RECORDS is composed of four main modules: the remote

control module, the startup module, the system profiler and a

module to post-process raw log files. The framework has been

written entirely using scripting languages, and in particular

Tcl/Tk (both version 8.5 and 8.6 were tested), Expect (for

automating interactive applications) and sh shell scripting. We

made this choice mainly for three reasons: the straightforward

Fig. 1. The RECORDS framework: block diagram, client/server TCP connec-
tions and interactions with ns2 and the acoustic modem.

string processing capabilities of such languages; their portabil-

ity (Tcl interpreters are typically available in distributions for

embedded systems); the possibility to test the code directly on

embedded systems, which substantially shortens development

and debug time.

We proceed by describing the components of RECORDS.

The STARTUP module can be seen as a simplified version of a

watchdog daemon. This module reads the parameters passed by

the user from the standard input, such as the IP of the modem,

the socket ports and the name of the log files folder. The role

of this module is crucial in the life cycle of the framework:

it checks that the required network ports are available, starts

other modules in the correct order, starts the system profiler

and, in case any component crashes, restores it along with the

other modules that depend on it.

The PROFILER module can be enabled for debug purposes.

It keeps track, with a predetermined period, of the CPU and

RAM consumption of each component of the framework,

thereby allowing the user to identify memory leaks or exces-

sively high CPU load.

The core components exploited for the remote control and

command functions are graphically shown in Fig. 1, along

with the TCP client/server connections opened between them.

We start with the network stack modules that implement the

medium access control layer (MAC), the network layer (NET)

and the application layer (APP). Their main role is to parse,

understand and deliver (either locally or remotely, or both) the

commands issued by the user.

The MAC interacts directly with the modem to deliver the

messages coming from the upper layers. It propagates the

status messages of the modem to the upper modules (e.g.,



message sent, error, message canceled, etc.) and provides some

basic multiple access interference mitigation via uniformly

distributed random backoffs prior to the transmission of any

message to the modem. The maximum backoff time can be set

remotely by the user. For each data packet received from the

modem, the MAC module queries the modem to retrieve the

multipath structure of the channel and logs it.

The network layer (NET) implements two network protocols:

a static source routing scheme and a flooding scheme. Each

packet can be sent (in broadcast, unicast or multicast) using

either protocol, and packets sent via different protocols can co-

exist simultaneously in the network. The route followed using

the static source routing scheme can be configured by the user,

and can contain as many hops as can fit in the maximum packet

size supported by the modem. The flooding scheme can also

be configured by setting a time-to-live (TTL) value that limits

the reach of the flooded packets. When the NET receives a

packet from the APP, it sets the required fields in the header

of the packet (e.g., the next hop), whereas when the packet

comes from the MAC, it decides whether to deliver the packet

locally to the APP or to forward it according to the protocol

used for this packet. RECORDS can be easily extended with

other network protocols, either by programming them in the

same scripting language used for the framework, or by loading

modules written with other languages, e.g., C++ or Python.

The APP module considered in this paper customizes the

framework to launch networking experiments via the DESERT

Underwater framework [1], although nothing forbids to write

other APP modules and plug them into the framework to

provide different functionalities. Our APP module keeps track

of the instances of DESERT started so far and can inform the

user about the status of either of them by telling whether it is

running, was stopped or never started. The APP module makes

it possible to remotely kill all instances of DESERT, or a subset

thereof. It also acts as an abstraction layer for the modem: the

user can send any message to the other nodes with no knowl-

edge of the structure of the physical commands understood by

the modem itself. It sets the environment variables required

to start the DESERT executables and can run a specified

experiment, with the possibility to piggyback a completely cus-

tomizable list of simulation parameters. By interacting with the

NET layer, it creates end-to-end acknowledgement messages

to notify the user about the reception of a command and/or its

output. Finally, the APP interacts with the OS to run any system

command and retrieve its output (tail, date and reboot

are relevant examples).

The ns-control (NSC) module is a layer that resides directly

between an instance of the DESERT framework (where it

effectively acts as the physical layer) and the acoustic modem.

Primarily, NSC forwards messages from the DESERT software

to the modem and vice-versa, and logs each message on file.

Moreover, it makes it possible to simulate a desired packet error

rate (PER) value over a given source-destination link, which

is a very useful tool if the user wants to simulate or force

a given network topologies. These PER maps are permanent

and persist through subsequent instances of DESERT: however,

thanks to the socket connection between the NSC and the APP

Fig. 2. Starting tree of the modules (arrows) and log files produced (points).

(see Fig. 1), the PER values can be read, set or reset in real time

by the user, either locally or remotely. Finally, the NSC retrieves

the channel multipath structure perceived by every DESERT

packet received from the modem. All logging functionalities

can be switched on or off (e.g., to save disk space).

To simulate the behavior of DESERT without actually start-

ing it or, more in general, to provide a random traffic generator,

we created an ns-dumb (NSD) module. This module can

be started at boot, or otherwise started/stopped remotely on

demand. It can be configured to send random ASCII strings to

a modem; the length of the string and the transmission period

can also be programmed remotely. This module can be used to

test the behavior of RECORDS under different network loads

in order to test the system and modem responsiveness.

The user (USR) module mimics the behavior of an actual

user. Instead of hard-coding default values for the internal

parameters of each module, USR sends them to the framework

either locally, remotely, or both. Similarly, USR can query

the modem by mimicking the same commands that a human

user would have used if he had been connected directly to

the modem. The module can ask, for example, to reset the

modem, to set the acoustic ID of the modem and to set the

source level. The settings can be issued at boot time, after a

predetermined period, or also periodically. Among other things,

these capabilities make it possible to send periodic heartbeat

messages, e.g., in the form of strings.

Every RECORDS module produces a verbose and detailed

log file, that can be used as meta-data when post-processing

experimental results as well as for debug purposes. Log files

can be individually disabled to save disk space. We provide

an ANALYZER script that, for most modules, processes the

logs and produces a human-readable output, in order to obtain

statistics on the fly and in real time about the status of the

framework and of the DESERT Underwater experiments. We

also provide scripts that generate plots. A global overview of

the interaction among the modules and the log files produced

by RECORDS is reported in Fig. 2.

B. RECORDS Packet Structure

RECORDS exchanges messages among remote nodes by

using packets created by the framework itself. The structure of



Fig. 3. Structure of the header for the flooding routing scheme (top) and for
the static source routing scheme (bottom).

the packets is not fixed and the fields depend on the protocol

employed by the packet. A graphical representation of the

packets created by RECORDS is reported in Fig. 3.

The first four fields are the same for both protocols: a letter

that identifies the protocol (F for flooding and S for static);

the ID of the source (SRC) of the packet (if the packet is

forwarded, the SRC does not change); the sequence number of

the packet (SN), where we note that in the context of any given

experiment, the pair SRC–SN uniquely identifies a packet; a

list of destinations (DST). The latter field can be set as a

broadcast address, as a single unicast address or as a list of

unicast addresses. When a node receives a packet, the NET

module checks if the ID of the current node is contained in

this list. If so, it sends the packet up to the APP and removes

its own ID from the list. After the deletion, if the list is

not empty, the packet is forwarded according to the specified

protocol; otherwise, as a general rule, the packet is dropped.

Optionally, the user can choose to override this behavior so that

the flooding scheme keeps retransmitting the packet until the

TTL reaches zero, or so that the static source routing scheme

keeps forwarding the packet along the specified route.

The fifth field depends on the protocol. In case of flooding, it

represents the TTL value, i.e., the maximum number of times

that the packet can be forwarded, and is initially set by the

source node. Every time the NET protocol processes such a

packet, it decrements the TTL value in the header and, if the

value reaches zero, the forwarding procedure is stopped. The

TTL* field contains a copy of the initial TTL value set by the

source, and can be employed to estimate the number of times

the packet has been forwarded by subtracting TTL from TTL*.

This information is used to reduce the amount of overhead in

the network by properly setting the TTL of acknowledgements

sent in response to a received command.

The fifth field in the case of the static source routing protocol,

namely ROUTE, contains the static route that the packet has to

follow, and is set by the packet source. When a node receives

the packet, it checks if its own ID is contained in the DST field.

If so, it sends the packet to the upper layers and removes its ID

from the list of destinations. If other destinations remain in the

DST field and there are still hops to be covered in the ROUTE

field, the node forwards the packet to the next hop in the list.

A node whose ID is in the ROUTE field, but not in the DST

field, forwards the packet to the next hop without sending it

to the upper layers. The sixth field, ROUTE*, is the length of

the ROUTE list. It is worth noting that the ROUTE field can

contain the same ID more than once, because in some cases it

may be useful to create loops in the path followed by a packet.

The seventh field has the same function for both protocols

and it represents the payload of the packet. The payload

Fig. 4. Node deployment for testbed experiments in the wave flume.

is application-specific, and can be a remote command for

RECORDS (e.g., send a packet remotely), a system command

(e.g., battery check, node reset) or a command for the DESERT

Underwater framework.

III. SOFTWARE EVALUATION

In this section we evaluate the performance and footprint of

the RECORDS framework by means of some experiments with

hardware in the loop. In particular, we start by describing the

hardware setup arranged for the tests, we proceed with some

controlled tank experiments in Section III-B, and conclude

by describing a sea trial where we successfully employed

RECORDS to remotely start experiments in a multihop network

with highly asymmetric links.

A. Hardware Description

For all experiments, we employed both the S2CR White

Line Science Edition (WiSE) and the S2CR 18/34 modems by

EvoLogics GmbH [5]. To control the modems, we employed

several different embedded systems: the IGEPv2 DM3730,

by ISEE [13], the Pandaboard, by pandaboard.org [14], the

Gumstix FIREstorm coupled either with the Tobi or with the

Tobi-Duo expansion board, by Gumstix, Inc [15], and the

Raspberry Pi Model B, by the Raspberry Pi Foundation [16].

B. Laboratory Testbed

This set of experiments aims at evaluating the RECORDS

framework in the controlled environment provided by the

25-m wave flume of the Maritime Laboratory of the Civil,

Environmental and Architectural Engineering Department of

the University of Padova. Three S2CR WiSE modems were

deployed in the tank. Each modem was connected to a different

embedded system, namely one Raspberry Pi (acoustic ID 2)

and Gumstix+Tobi (acoustic ID 1) and one Gumstix+Tobi-Duo

(acoustic ID 3). The node with acoustic ID 1 controls the

network and is positioned roughly in the middle of the tank.

The other nodes are placed at opposite sides. The scenario

is sketched in Fig. 4 for reference. The transducers of the

nodes are placed 0.3 m below the surface, or 0.4 m from the

bottom of the tank. The distance between nodes 2 and 1 is

7 m, whereas the distance between nodes 1 and 3 is 9 m.

We remark that the Raspberry Pi and the Gumstix have very
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Fig. 5. CPU Load [%] for the Gumstix in the presence of heavy traffic with
packet generation period 2 s (top) and light traffic with packet generation period
20 s (bottom).

different hardware features and prices.1 With the following

experiment, we prove that RECORDS is lightweight and does

not stress the CPU and the RAM of the system; moreover,

it behaves similarly on either embedded board despite their

hardware differences. For a comparison of the behavior of

embedded systems with the DESERT Underwater framework,

we refer the interested reader to [17].

Test 1: CPU and RAM usage when running network

experiments. In the first experiment we focus on measuring

RECORDS’s requirements of CPU and RAM on the embedded

systems. We carry out the comparison under two realistic

work load conditions, reproducing either a heavy or a light

traffic, as could be experienced in a real underwater network,

depending on the application to be supported. In the heavy

traffic configuration, node 1 generates 1 data packet every 2 s

with a random payload of 30 bytes, and sends each packet

in broadcast. The packets are generated via the NSD module.

Nodes 2 and 3 receive the data packets, log them and retrieve

the channel multipath structure from the modem. In the low

traffic condition, the generation period is relaxed down to

20 s. In the plots we evaluate the CPU and RAM usage for

a total duration of 45 min from when the NSD module starts

generating traffic. We reset both the modems and the embedded

systems before starting each experiment. The CPU and RAM

usage is sampled every 1 s, and each value reported in the plots

is computed as the mean over one minute.

The plots for the CPU load (in % of the CPU time), for both

traffic generation rates, are reported in Fig. 5 for the Gumstix,

and in Fig. 6 for the Raspberry Pi. We observe that only the

NSC loads the CPU noticeably, whereas the other modules are

mostly idle. This is easily explained by recalling that, after

1The Gumstix is equipped with a TI OMAP3730 Cortex-A8 Core 1 GHz
whereas the Raspberry Pi with a ARM1176JZF-S 700 MHz. The price of the
a Gumstix FIREstorm with a Tobi expansion board is roughly 6 times the cost
of a Raspberry Pi Model B.

5 10 15 20 25 30 35 40 45
0

1

2

3

4

Experiment time [min]

C
P

U
 L

o
a
d
 [
%

]

 

 

USR
APP
NET
MAC
NSC

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

Experiment time [min]

C
P

U
 L

o
a
d
 [
%

]

 

 

USR
APP
NET
MAC
NSC

Fig. 6. CPU Load [%] for the Raspberry Pi in the presence of heavy traffic
with packet generation period 2 s (top) and light traffic with packet generation
period 20 s (bottom). Notice that the y-axis reaches up to 4% in the top panel.
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Fig. 7. Amount of RAM used [MiB] for the Raspberry Pi in the presence of
heavy traffic with packet generation period 2 s.

the startup phase (when the control framework sends remote

commands), the only module that actually processes packets

is the NSC. In particular, it reads messages coming from the

upper layers and forwards them to the modem, and vice-versa,

and logs the multipath structure for each received packet. In

the heavy traffic experiments, the overall CPU load is on the

order of 1.2% for the Gumstix and 2.8% for the Raspberry

Pi. Under light traffic, this value decreases to about 0.2% for

the former and 0.4% for the latter. As expected, due to the

fact that the Gumstix is equipped with a faster CPU, the CPU

load is lower compared to the Raspberry Pi. Nevertheless, the

global CPU consumption in the heavy load condition stabilizes

to low values for both embedded systems. From the previous

analysis we can state that, when the framework is processing

and analyzing packets from the ns2/DESERT framework, its

impact is very low on the CPU, and the impact does not

change dramatically depending on the embedded system, thus

confirming that it is lightweight.

The plots for the amount of RAM space used (in MiB) is

entirely analogous for all experiments. For this reason, we

report only the worst case of the Raspberry Pi in the heavy load

scenario, shown in Fig. 7. The differences among different

modules can be attributed to the number of TCP sockets

opened by each module. For example, Fig. 1 shows that APP
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Fig. 8. CPU load for the Raspberry Pi during the static routing experiment.

allocates the largest amount of RAM (3 sockets), whereas

USR requires the lowest amount, as it opens only 1 socket.

The overall amount of RAM required by RECORDS sums to

4 MiB for the Raspberry Pi and to 3.5 MiB for the Gumstix,

approximately 0.75% of the total amount of RAM available

on either system. We remark that the amount of RAM used

by RECORDS was observed to be stable throughout the entire

test, a good sanity check that suggests that the framework is

free from memory leaks. As a side note, Tcl 8.5 loaded on

the Gumstix board seems to lead to a slightly smaller memory

allocation with respect to Tcl 8.6 loaded on the Raspberry Pi.

From these tests, we can conclude that the CPU and RAM

footprint of RECORDS is very contained, and that it scales

well from light to intense communication rates.

Test 2: CPU and RAM usage when employing internal

RECORDS networking capabilities. While in the previous

analysis we focused on the performance of the framework itself,

in the second experiment we evaluate the CPU and RAM usage

of RECORDS when its networking functionalities are exploited

to route remote commands through a multihop network. This

makes it possible to evaluate the behavior of all modules (not

only the NSC as in the previous experiment). The setup is the

same of the previous experiment, but in this case we configured

node 2 to send strings to node 3 by using node 1 as a relay.

Upon the reception of a message from node 2, node 3 floods

back an acknowledgment message. The USR module in node 2

was configured to send the message HELLO_I_AM_NODE_2

every 20 s to the APP module:

SEND,S,3,1 3,HELLO_I_AM_NODE_2

where S instructs the framework to create a static source

routing message with node 3 as the final destination, with list

of hops 1 3. In this experiment, node 2 (the source) must

carry out the largest number of operations. To maximize the

stress to which the node is subject, we equipped it with the

more performance-constrained Raspberry Pi board, and will

focus our analysis on this platform. The RAM usage for this

experiment is the same as in the previous experiment, and is

not reported for brevity. Fig. 8 reports a plot of the impact

of RECORDS on the load of the Raspberry Pi CPU across a

windows of 3 data packet transmissions, where we sample the

CPU load once every 1 s. For each packet, the initial peak is

due to the generation of the packet itself, to the translation

of its contents into an accepted modem command, and to

the communication with the modem. A second peak is due

to the reception of the acknowledgment from node 3. Notice

Fig. 9. Components involved in the measurement of the delay to execute
remote commands.

that this happens roughly 5 s after the packet transmission.

The non-zero CPU use tail between these two peaks is due to

the overhearing of forwarded packets, that are not meant for

node 2, and are therefore discarded by the MAC or the NET

layer. As opposed to the previous experiment, in this one the

NSC module does not load the CPU, as we do not send traffic

through the NSC.

Test 3: delivery and execution latency for remote com-

mands. In the third tank experiment, we evaluate the time

required to execute remote commands. This time depends on

several factors like the propagation delay, the processing time

within RECORDS, and the time required by the modem to

modulate and transmit the packet. We employed the same

topology as in Fig. 4 where node 2 (equipped again with a

Raspberry Pi) sends commands to node 3 (equipped with a

Gumstix). We synchronized the node clocks in advance to

within a few ms via the Network Time Protocol (NTP), in

order to allow more precise time measurements. We consider

three types of remote commands: those that do not require an

acknowledgment, those that require an acknowledgment, and

those specifically employed to start the DESERT Underwater

framework. The last one is especially interesting both because

it requires several seconds to execute and because it finds prac-

tical use in underwater networking experiments. The distance

between nodes 2 and 3 is about 16 meters, which translates

into a propagation delay of about 10 ms by assuming a sound

propagation speed of 1500 m/s. The processing time required by

the modems is undeclared by the manufacturer, so we estimated

it by subtracting the processing delays of the components that

we could measure from the overall delay measured.

Fig. 9 provides a graphical representation of the components

involved in the measurement of the execution time of remote

commands, namely (1) the system time required to process the

command, (2) the time required by RECORDS to process, parse

and forward the command to the modem, (3) the time required

by the modem to deliver the message via the acoustic channel.

In the following, we compute each reported value as the av-

erage of 10 separate measurements, where every value encom-

passes the three components listed above. The first is used to

remotely reboot a node, and does not require acknowledgments.

The command issued by the user is:

SEND,F,2,1,SYSTEM 0 reboot



where: SEND means that we want to send a remote command,

F means that we request the use of the flooding protocol,

2 is the ID of the destination and 1 is the TTL. SYSTEM

0 reboot is the remote command: in particular, SYSTEM

means that RECORDS has to execute the command as a system

command at the receiver side, 0 is the execution delay, and

reboot is the command to be executed. The time required by

RECORDS to read, interpret, deliver and remotely execute the

user command was 1.33 s, where 0.73 s are due to RECORDS

itself, a negligible part is due to the processing time and 0.60 s

are due to the acoustic communication chain.

The second command we consider is used to retrieve the list

of files contained in a remote folder. The command from the

user is:

SEND,F,2,1,SYSTEM 0 ls

The structure of this command is the same as in the previous

case, except that now we want to remotely run the ls system

command. The overall time required is 3.75 s, where 1.60 s are

due to RECORDS, 0.54 s is the system processing time, and

1.61 s are required by the acoustic communication chain.

The third command we consider starts the DESERT Under-

water framework remotely. The command from the user is:

SEND,F,2,1,NS 02 M 35 120 3600 3 1 0 10 30 20\

7 8 0 2

where the first part of the command is the same as before,

and NS is a special tag used to instruct RECORDS to start

DESERT. 02 is the ID that uniquely identifies the experiment

being started, and the remaining input parameters are used to

configure the experiment. The time required by this command

is 4.76 s, where 1.67 s are required by RECORDS, 1.48 s

are the system processing time, and 1.61 s are required by the

acoustic communication chain. The amounts of time required

by RECORDS and by the communication chain are comparable

across all experiments presented: this determines that the be-

havior of RECORDS and of the modem is stable under several

conditions, as suggested in Section III-A. In the presence of a

larger distance among the nodes, the measured values would

increase according to the longer propagation delay. The main

difference among the three tested commands, except that two

of them required an acknowledgment, lies mainly in the time

required to execute the remote command, especially the one

related to DESERT. We also measured the time required by the

latter special command in both embedded platforms. The mean

value is 1.48 s for the Raspberry Pi and 0.75 s for the Gumstix.

This is due in part to the faster CPU of the Gumstix, and in

part to the different SD cards used by the systems: a Class 2

for the Raspberry Pi and a Class 6 for the Gumstix.

C. Use of RECORDS during the CommsNet’13 Sea Trial

In the period Sep 9–22, 2013, we participated to the

CommsNet’13 sea trials in La Spezia, Italy, in the context

of a collaboration with the NATO STO CMRE. The purpose

of our trial module was, among others, to test and compare

four network protocols developed for the DESERT Underwater

framework. The network employed for the trial was composed

by several types of nodes, including bottom nodes, mobile

Fig. 10. A comprehensive snapshot of the network deployment during the
CommsNet’13 sea trials in La Spezia, Italy. The yellow pins delimit the
operational area. The network includes bottom-mounted nodes, a ship node,
an acoustic/radio gateway buoy, two autonomous underwater vehicles and one
autonomous surface system.

nodes and floating nodes. Since not all the nodes were reachable

via a cable or radio link, we could only reconfigure them and

check their status via the RECORDS framework. In particular,

we successfully used RECORDS to start, manage and stop

more than 30 network experiments. As an example of real-

world application of RECORDS, we will now discuss one of

the CommsNet’13 experiments (the configuration parameters

for this experiment and some measured performance metrics

are given in Table I). In this analysis we want to demonstrate

how we configured the network experiment remotely, how the

configuration message propagated, as well as some numerical

results such as the time required to configure each node. An

overview of the deployment is depicted in Fig. 10. Compared

to the nodes reported in the figure, the Wave Glider was not

available, and we assumed to have direct access only to node

M2.2

Considering that the position of our node was quite central

in the deployment, we decided to configure the nodes by using

the flooding protocol. The command sent via M2 was:

SEND,F,255,4,NS 53 M 60 240 36000 4 1 0 15 48\

120 2 7 8 3

With this command, the modem broadcasts a configuration

message with TTL 4, in order to instruct the entire network

to start DESERT Underwater to experiment a specific routing

protocol named MSUN (whence the M), with experiment ID

53. The nodes were also instructed about the duration of the

experiment, 36000 s, about which ones are packet sources (IDs

2, 7 and 8) and which are sinks (node 3), and are provided

with a list of parameters internal to the protocol. In Fig. 11 we

report the paths followed by the configuration messages before

reaching all the nodes. The IDs of the nodes in this image are

the acoustic IDs associated to the modems. Compared to the

labels in Fig. 10 the association is: M1→1, M2→2, M3→3,

2In fact, nodes M1 through M4 and the gateway buoy were directly accessible
via radio links. However, we decided to fully exploit RECORDS by not using
the radio link option.



TABLE I
CONFIGURATION PARAMETERS AND SAMPLE RESULTS OF THE ROUTING

EXPERIMENT PERFORMED DURING THE COMMSNET’13 TRIALS.

Packet gen. rate per node 1 pkt/min
Source node IDs 2, 7, 8
Sink node ID 3
Actual experiment duration 1445 s
Total number of bits sent 115294
APP-layer PDR 0.98
NET-layer PDR 0.98
Overhead 662 bit/pkt
Throughput 2.35 pkt/min

M4→4, Gateway Buoy→5, Wave Glider→6, Ship Node→7,

first Folaga AUV→8, second Folaga AUV→9. The message,

sent by node 2, reached nodes 1, 3, 5, 7 and 8 directly. The

framework is configured so that the source node does not

configure itself directly upon sending the message, but only

if it receives a forwarded copy of it. The other nodes received

a forwarded copy of the message: node 4 received the message

from node 3, and nodes 2 and 9 received a copy forwarded by

node 5 (the latter despite node 2 was geographically closer).

As reported in Section III-B, the time required to start

a command depends on several factors. From the log files

we can infer that the reception of the configuration message

required roughly 3 seconds for nodes 1, 3 and 5, about 4 s for

nodes 7 and 8, and 6 s for nodes 2, 4 and 9 (which received

a forwarded copy of the configuration message). Notably, the

application layer ACK from node 4 to node 2 was received

directly, and not through the 4→3→2 route. This is one

among many cases where asymmetric links were experienced,

and shows that RECORDS can operate correctly also in this

condition. The initial reconfiguration message was sent by

node 2, and forwarded 8 times (up to once per node), whereas

15 configuration messages (including replicas) were received in

the network. For each unique configuration message received,

the nodes sent an acknowledgment message to node 2. All such

messages were received.

IV. CONCLUSIONS

In this paper, we presented RECORDS, an open source

framework to remotely control underwater modems via acous-

tic messages. RECORDS is modular and programmed using

scripting languages for easier portability. We conducted several

field experiments to test the framework, both alone ad along

with several network protocols programmed using DESERT

Underwater. The results show that RECORDS is a stable,

lightweight and robust solution to control underwater networks.

The performed testbed and real-world experiments allowed

us to measure both the impact of RECORDS on the system

resources of different embedded platforms and the latency

before commands are actually executed on a remote node. The

results confirm that RECORDS can be employed extensively

in real world experiments.
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