
Testing Network Protocols via the

DESERT Underwater Framework:

the CommsNet’13 Experience

Giovanni Toso∗, Ivano Calabrese∗, Federico Favaro∗, Loris Brolo∗, Paolo Casari∗‡, Michele Zorzi∗‡

∗Department of Information Engineering, University of Padova, via Gradenigo 6/B, I-35131 Padova, Italy
‡Consorzio Ferrara Ricerche, via Saragat 1, I-44122 Ferrara, Italy

E-mail: {tosogiov, icalabre, favarofe, brololor, casarip, zorzi}@dei.unipd.it

Abstract—In the context of a collaboration with the NATO STO
Centre for Maritime Research and Experimentation (CMRE),
during the CommsNet’13 campaign we deployed a large set
of experiments aimed at measuring some network statistics for
three protocols for remote data retrieval in underwater networks,
namely Uw-Polling (a controlled access scheme), MSUN (a source
routing approach with support for mobility) and U-Fetch (a
scheme based on two hierarchical levels of controlled access). The
main idea behind the trial was to perform some experiments in
order to get a hands-on practical experience with the protocols,
evaluate their performance in a systematic way, and observe
which specific features of a real world experiment can alter the
performance of the protocols, compared to a computer simulation.
The results obtained help understand the protocols better and
can be used to refine their design and improve their performance.
The experiments are run thanks to the flexibility of the DESERT
Underwater framework, and managed through a newly designed
acoustic remote control framework called RECORDS.

I. INTRODUCTION AND RELATED WORK

Network simulators are increasingly accurate and complex.

In recent years, several frameworks for Underwater Acous-

tic Networks (UANs) have been presented [1]–[5]. Despite

the level of accuracy of network simulation frameworks, a

real world deployment presents a large number of challenges

that are difficult to predict and address accurately. In this

work, we present some results obtained in the context of the

CommsNet’13 campaign, carried out in collaboration with the

NATO STO Centre for Maritime Research and Experimentation

(CMRE). This campaign gave us the opportunity to test, in a

real environment, the following three protocols: Uw-Polling [6]

(a controlled access scheme), MSUN [7] (a source routing

approach with support for mobility) and U-Fetch [8] (a scheme

based on two levels of controlled access).

Thanks to the experience accumulated in previous sea trials

and in the specific CommsNet’13 environment, we highlight

how the challenges faced during a sea trial can affect the

performance of the protocols tested, especially as compared to

results obtained by simulation. These results can be effectively

utilized to improve the protocols and adapt them to be more

robust both in simulation and in real world campaigns.

Our experimentations in the field are made possible thanks

to two software packages: the DESERT Underwater frame-

work [1] and the RECORDS framework [9]. These tools,

developed by our group and freely available at [10], [11], are

designed in order to make the migration from computer simula-

tions to real world trials as seamless as possible. The immediate

benefit of this is that the final users have the chance to debug

and evaluate the protocols before the trial and, when ready,

use the same code in a real experiment, thereby minimizing

the migration costs. The three protocols presented have been

implemented in the DESERT Underwater framework [1] and

have been tested intensively by means of simulations in [8]

before the trial. In order to interface the protocols with real

hardware, we exploit the capabilities of the DESERT and

RECORDS frameworks. We only had to implement, for each

of them, a simple layer called packer module where we tell the

framework how to convert the fields of the protocol headers

into a bit stream suitable for transmission, and vice-versa. The

schedule of the experiments, the remote reconfiguration of the

nodes and the possibility to check the status of the nodes were

managed thanks to the features provided by the RECORDS

framework.

Similar efforts devoted to frameworks that make it possible

to both simulate and experiment underwater network protocols

have been presented in the literature. An example can be found

in [12] where the authors propose a novel system to remotely

control and reconfigure an underwater acoustic sensor network

named Back-Seat Driver. It uses the SUNSET framework [2]

to remotely run network experiments and to check the status

of the nodes. The system has been proved to be robust and

flexible.

The Underwater Networks Project (UNET) is presented

in [4]. The UNET project consists of several related compo-

nents: the UnetStack framework provides a basic set of agents

that allow an underwater network to be deployed; the Unet Sim-

ulator, based on UnetStack, allows Unet agents and protocols

to be simulated; the Unet-2 Modem is a UnetStack-compatible

software-defined modem. Its primary features are flexibility,

forward error correction codes, and network protocols to be

tested at sea.

Aqua-Net Mate, presented in [3], is an extension to the Aqua-

Net framework that gives the possibility to switch seamlessly

between simulation mode and experiment mode. The frame-

work introduces also other features like a real-time virtual

channel/modem simulator and a newly designed state machine

exploited to emulate real acoustic modems. The authors prove



that their solution is effective and that their state machine

used in simulation can accurately capture the behavior of real

underwater acoustic modems.

The authors of [13] present an acoustic channel emulator

to conduct laboratory controlled experiments. A computer, that

runs the emulator, is connected to a modem through a serial

port and is fed with captured acoustic signals from a modem.

The captured signals are processed in order to simulate the

effects of a real underwater acoustic channel and the output is

finally played by an audio device and recorded by the receiver

modem. The presented emulator allows developers to evaluate

protocols without deploying them in a real world underwater

scenario.

In [14] the authors state that research experimentation in

UANs is limited by the high cost of underwater networking

experiments, and lack of a single, easily-replicable platform

for evaluation. In order to find a compromise, they propose

Underwater Platform to Promote Experimental Research (UP-

PER), a low-cost and flexible underwater platform designed

to enable cost-effective and repeatable experimentation. Their

solution uses Commercial Off-the-Shelf components to provide

a hardware/software solution to interface hydrophones with

laptops that act as physical layer. The authors proved that their

solution can easily integrate existing and new protocols and

thanks to this validate simulation results.

In order to minimize the development costs, Evologics

GmbH [15] provides a real-time emulator that aims to optimize

underwater network protocol development by removing, in the

early stages, the need to purchase actual modems. The proposed

tool can execute the same code used by the modem without any

modifications, emulates all features of the modem’s data-link

protocol layer, and includes a simulator of the physical protocol

layer. The proposed solution offers a time-saving solution that

minimizes development costs for upper layer network protocols

and simplifies integration of acoustic modems into underwater

infrastructure.

An emulation system that makes it possible to test network

protocols for acoustic networks on real hardware without re-

quiring actual sea trials has also been presented in [16].

The rest of the paper is organized as follows: Section II

presents the DESERT framework, the three protocols tested

during the sea trial, and the RECORDS framework used to

manage the experiments and control the modems acoustically.

Section III describes the scenario and the equipment used

during the sea trial, and presents some of the real-world

experiments conducted at CommsNet’13. Section IV concludes

the paper.

II. FRAMEWORK

A. DESERT Underwater Framework

The DESERT Underwater framework is a set of libraries

based on the well known ns2-nsMiracle network simulator.

DESERT was created with the goal to support the design

and implementation of underwater network protocols both in

simulation and in real-world trials. It provides several protocols

spanning all layers of the ISO/OSI stack as well as libraries that

make it possible for the final user to interface the protocols

with real hardware in a straightforward way. This enables the

reuse of the same code for both simulations and real field

experiments. The first release of DESERT Underwater dates

back to 2012, and was presented in [1]. A second version,

released in 2014, is introduced in [17]. The change-log of the

second version is wide, and the major updates include: a better

interface to the modems, improved and completely automated

installation procedures, better compatibility with embedded sys-

tems, and a more detailed documentation. The three protocols

tested in this sea trial (summarized in Section II-B), have been

implemented as libraries within the DESERT framework. For

each protocol, we additionally implemented a so-called packer

module, i.e., a special library that contains all instructions to

compress and convert the header of a specific protocol into a bit

stream, and vice-versa. All packers are interfaced to the Adap-

tation Layer (AL) module of DESERT [17], which manages

such conversions and fragments/de-fragments the packets when

needed. When all the packers of a specific stack are combined

together, in the transmission phase the AL is able to serialize

the headers, compress them and create a packet suitable for the

modem; conversely, during the reception phase the AL is able

to decode and recreate the original packet.

B. Protocols

In this section, we shortly summarize the protocols tested

during the CommsNet’13 campaign. The interested reader is

referred to the cited papers (and the references therein) for

additional details.

Uw-Polling is a Medium-Access-Control (MAC) protocol

that uses the polling paradigm to retrieve data packets from

a network of nodes usually placed on the seafloor [6]. The

retrieval is typically administered by the sink, which is also the

only mobile node in the network. Uw-Polling works in three

phases: i) neighbor discovery; ii) retrieval of a summary of

available data from the discovered nodes; iii) sequential polling

of the nodes according to a given priority criterion. In general,

Uw-Polling privileges more recent data, hence the nodes upload

their packets to the sink by managing their data queues in a

Last-In-First-Out fashion.

The Multi-sink Source routing protocol for Underwater

Networks (MSUN) [7] is a routing protocol partly inspired

to Dynamic Source Routing (DSR), to which it adds several

new features that improve the performance of source routing

in underwater scenarios, especially in the presence of multiple

sinks. Like DSR, MSUN is a reactive source routing protocol,

in that the source nodes choose a complete route toward the

sink for each of their packets, and embed a full specification

of this route in the packet header. In turn, this avoids a

hop-by-hop relay election process. MSUN operates by first

tracing routes to the desired destination via a path request–path

reply mechanism, and then by using the best route among all

discovered ones. In these experiments, the shortest path metric

was used to single out the routes. Unlike Uw-Polling, MSUN

serves its data queue according to a First-In-First-Out (FIFO)

policy. For error control, MSUN controls per-packet Stop-and-



Fig. 1. A comprehensive snapshot of the network deployment during the
CommsNet’13 sea trials in La Spezia, Italy. The external line delimits the
operational area. The network includes bottom-mounted nodes, a ship node,
an acoustic/radio gateway buoy, two autonomous underwater vehicles and one
autonomous surface system. (Modified from a Google Maps screenshot.)

Wait retransmissions in a cross-layer fashion, and leverages on

failed transmission counts to measure the health of a given path.

Optionally, MSUN can work in multicast or broadcast mode,

using a form of restricted flooding in both cases.

The U-Fetch protocol has been developed with the aim to

strike a balance between the two routing approaches offered

by Uw-Polling and MSUN [8]. U-Fetch divides the network

into three hierarchical levels: the Sensor Nodes (SNs), which

are located on the sea-floor and monitor the area surrounding

their position, are at the lowest level of the hierarchy; the

information retrieved by the SNs is then conveyed to the Head

Nodes (HNs), the only nodes allowed to communicate directly

with the sink; finally, the mobile sink is at the highest level

of the hierarchy, and is the final destination of all packets.

Two distinct communication patterns are set up by U-Fetch to

administer SN–HN as well as HN–sink communications. Both

patterns are based on controlled access, and except for some

details [8] are basically analogous to the pattern employed by

the sink in Uw-Polling.

C. RECORDS Framework

For the successful completion of sea trials involving au-

tonomous and remote underwater acoustic nodes, it is important

to monitor the status of the network in real time. In an environ-

ment where cabled or radio links to the modems are not always

available, it is necessary to find other ways to interact with the

nodes, in order to instruct them about the actions to be carried

out. To satisfy these requirements, we developed a robust and

versatile framework called RECORDS [9]. RECORDS is an

open source framework that makes it possible to remotely

monitor and control a heterogeneous network of underwater

(a) Uw-Polling. (b) MSUN and U-Fetch.

Fig. 2. Logic topology for the baseline experiments.

acoustic nodes running side-by-side to the protocol under

testing. RECORDS exploits acoustic communication links to

deliver control messages, and thus avoids the need to deploy

cabled or wireless connections to control the nodes. RECORDS

is composed by several modules that have been written entirely

using scripting languages. This choice improves the portability

of the modules and makes it possible to develop them directly

on the embedded systems. The communication among the

modules is obtained via loopback TCP sockets. The modules

available in RECORDS offer: a full network stack with basic

multiple access interference mitigation, two network protocols,

an application layer that acts as an abstraction layer for the

modem; a watchdog daemon; a profiler module to evaluate the

impact of the framework on the system resources; a module

to remotely manage the experiments with DESERT, as well as

further utilities [9]. RECORDS has been successfully tested in

several testbed and real-world experiments and has been proven

that be a stable, lightweight and robust solution for the control

of underwater networks [9].

III. EXPERIMENTS

A. Scenario and Equipment

The CommsNet’13 trial was conducted in collaboration with

the NATO STO Centre for Maritime Research and Experi-

mentation (CMRE) in the period September 9-22, 2013. The

operational area was offshore the Palmaria and Tino Islands,

in northern Tyrrhenian sea, Italy. An aerial view of the area

is reported in Fig. 1. CMRE made several systems available

to perform the CommsNet trial, including the Littoral Ocean

Observatory Network (LOON), a gateway buoy, two eFolaga

Autonomous Underwater Vehicles (AUVs), four MANTA sys-

tems, a WaveGlider and the NATO Research Vessel Alliance. In

particular, the LOON is a set of 4 acoustic nodes deployed on

the sea bottom in a diamond shape. These nodes are fixed and

cabled to shore. In Fig. 1 they are colored in red and labeled

M1 to M4. The gateway buoy is anchored to the sea bottom

in a central position with respect to the LOON nodes, and

includes a WiFi antenna for easier system access. It is also

equipped with its own acoustic modem (in green in Fig. 1).

The eFolaga AUVs (manufactured by Graal Tech [18]) were

added to the network as static nodes in the positions marked
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Fig. 3. Application-layer PDR for Uw-Polling as a function of the packet
generation rate per node.

in white in Fig. 1. The four MANTA [19] gateways worked as

replacements for the eFolagas, and could be deployed on a boat

in the same positions. The NATO Research Vessel Alliance [20]

was also used as a static node with a MANTA system.

An autonomous floating surface vehicle named WaveGlider

(manufactured by Liquid Robotics [21]) was also occasionally

available. In Fig. 1, this system is colored in pink and is labeled

as Wave Glider.

Throughout the sea trial, each modem was labeled with a

unique acoustic ID: IDs 1 to 4 for the nodes of the LOON,

ID 5 for the Gateway buoy, IDs 7 and 8 for the two eFolagas,

ID 6 or 13 for the WaveGlider depending on the payload, ID 9

for the MANTA that was used to control the ship node.

Since not all the nodes were available for the entire sea trial,

we decided to set up a plan in order to carry out network

experiments with a stable subset of nodes. The rationale that

led to this choice was to test our three network protocols

in a scenario with the same configuration. Specifically, we

decided to use the four LOON nodes and the gateway buoy,

which featured the longest up time and were easiest to control.

Accordingly, we planned a set of experiments where we set

the total traffic generated by the nodes to 3, 4, 6 and 8 packets

per minute (pkt/min). Each protocol introduced in Section II-B

was tested under all packet generation rates for a total of

12 experiments, each lasting 25 minutes. In the next paragraph,

we will describe the baseline experiments in more detail for

each protocol.

B. Baseline Experiments

1) Uw-Polling: In the baseline scenario, for the Uw-Polling

protocol, the gateway buoy is configured to be the sink, whereas

the four LOON nodes are configured as sensors. A graphical

sketch of the network is reported in Fig. 2(a). Fig. 3 shows the

Application (APP) layer and Medium-Access-Control (MAC)

layer Packet-Delivery-Ratio (PDR) as a function of the packet

generation rate in pkt/min. We observe that the PDR for the

two lowest values of the traffic load is only slightly lower

than 1: hence, Uw-Polling proves to be very reliable in these

cases. Notably, the PDR at 3 pkt/min is slightly lower than at

4 pkt/min due to less favorable channel conditions during the

3 pkt/min experiment. Taking a closer look at the MAC-layer

PDR, however, we can note that, with Uw-Polling, the nodes
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Fig. 4. Average delivery delay for Uw-Polling as a function of the packet
generation rate per node.
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Fig. 5. Overhead for Uw-Polling as a function of the packet generation rate
per node.

can reliably deliver the packets to the sink once they are polled,

thanks to the channel reservation mechanism. As the traffic

generation rate increases, however, a large number of packets

remain in the nodes’ queues, which in turn leads to a decrease

of the APP-layer PDR. From this result, we can conclude that

the fine tuning of the protocol timings can help, where shorter

(although less safe) guard times are applied between subsequent

transmissions of signaling and data packets. Other than the

configuration of the timers, a more detailed inspection of the

type of packets lost shows that some control packets required

by the protocol in order to set up the polling cycle are lost.

This makes some nodes skip their polling turn. Protecting these

packets with some form of redundancy is desirable and is the

objective of our future work.

A measure of the impact of skipping polling turns can be

seen in Fig. 4, which shows the average end-to-end delay as a

function of the packet generation rate per node. We note that,

for the highest traffic values, the average end-to-end delay is

particularly high, exceeding 350 s. In fact, due to the loss of

signaling packets, some nodes had the chance to participate

in the polling cycle only 6 or 7 times out of the 15 polling

cycles initiated by the sink. This originates larger delays, as

the generated packets have to be stored in the node queue in

the meantime. Furthermore, for increasing traffic values, the

probability that a node can empty its queue (by transmitting all

packets therein) every time it is polled is lower, because the

maximum number of packets per polling cycle is limited to 5

in order to increase the fairness of the protocol. Finally, Fig. 5
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Fig. 6. PDR for MSUN as a function of the network packet generation rate.

shows the overhead of the protocol as a function of the traffic

generation rate. For Uw-Polling, and all the others protocols

considered in this work, the Overhead metric is calculated as the

total number of bits transmitted for control packets (taking into

account that packets of different sizes may be used), divided

by the number of unique data packets correctly delivered to

the sink. As expected, for low packet generation rates, the

overhead reaches almost 200 bits/pkt, decreasing to 150 bits/pkt

for higher traffic, even though the PDR is lower. This means

that Uw-Polling can effectively manage the inherent overhead

due to the handshake and polling process, mainly thanks to

the transmission of multiple data packets back-to-back in each

polling turn.

It is worth remarking that several practical aspects have to

be considered when testing Uw-Polling in real scenarios. For

instance, we have to account for the real hardware times as we

cannot pass all the data packets to the modem too quickly in

order to not overload the hardware buffers. This would bring the

modem to discard some packets and this would have an impact

on the performance. Furthermore, we have to set a guard time

in order to cope with underwater channel delays, which are

usually higher in real experiments than in simulated scenarios.

Hence, we have to find out a good tradeoff between good

performance and sufficiently large timers. Usually, the timings

of the protocol set for simulation are too tight, because in a

simulated controlled scenario we can get rid of the hardware

processing time and of the impairments of the channel. These

tight timers in a real experiment bring the timers to expire

before all the nodes have sent all the packets. This has a heavy

impact on the performance, especially on the PDR. Hence,

we have to take into account some guard times to make the

protocol more resistant to the variable conditions of the real

world experiment. This will have a direct impact on the end-

to-end delay and on the throughput, but will let the protocol

deliver efficiently almost all the packets generated.

2) MSUN: In this section we present a detailed analysis of

the performance of MSUN in 3 out of the 4 experiments com-

posing the baseline experiment plan. The results are available

for packet generation rates equal to 3, 6 and 8 pkt/min in the

network. The results for the scenario with 4 pkt/min are not

shown, because the experiment was not completed successfully

(namely, the PC that was connected to the gateway buoy
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Fig. 7. Average delivery delay for MSUN as a function of the network packet
generation rate.
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Fig. 8. Overhead for MSUN as a function of the network packet generation
rate.

disconnected, causing the control over the sink to terminate

and the experiment to stop forcedly). The topology of the

network in this case is slightly different than the one in the

Uw-Polling experiments, and is depicted in Fig. 2(b). Due to

the limited distance among the LOON nodes (IDs 1 to 4)

and the destination node (ID 5), after some tests performed

via the RECORDS framework, we observed that all sources

would have been able to deliver data packets directly to the

destination. In order to test the routing capabilities of MSUN,

we had to blacklist some of the links via software primitives,

thereby forcing multihop paths from each source to the sink.

Specifically, for the following experiments we set 2 source

nodes (IDs 2 and 3) and blacklisted the direct links 2 ↔ 5 and

3 ↔ 5. The link 2 ↔ 3 was initially blacklisted, and activated

after 12 min in each experiment.

In Fig. 6 we show the APP-layer and NET-layer PDR. We

observe that the PDR at the APP layer is roughly one third of

the value at the NET layer for all values of the traffic load.

The reason for the low values of the APP PDR is multifold.

From the log analysis we observed that the number of Path

Search packets sent is generally low:1 in the three experiments,

the number of these kinds of packets sent for each data packet

generated are 0.14, 0.12 and 0.32, respectively for a traffic load

value of 3, 6 and 8 pkt/min. These values are comparatively

1The Path Search packets are generated by the MSUN protocol to establish
the routes toward the destinations. More details on this process can be found
in [7].
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Fig. 9. PDR for U-Fetch as a function of the packet generation rate per node.

low, which in turn indicates that the path search procedure is

less effective than expected against difficulties such as packet

collisions and channel-induced packet losses. If we consider the

ratio between the number of retransmissions for each unique

data packet sent, we obtain values between 3 and 4 (respectively

3.3, 3.3 and 3.9), a clear indicator that the protocol must

retransmit several times the same data packet in order to deliver

it to the next hop. Once the path is created, the protocol is

in fact able to exploit it and deliver packets, but in order to

do it, the node has to retransmit the packet up to 4 times,

which slows down the queue servicing process. At the end of

the experiments, this is reflected by a large number of packets

undelivered because they are in the queues of the nodes.

In Fig. 7, we report the average end-to-end delay as a

function of the traffic load in the network. The results reflect

the trend of the PDR: higher PDR values correspond to lower

delays. For higher PDR values, the average number of packets

in the buffer of the nodes is lower, which means lower service

time and lower average delays. For a global traffic load of

3 pkt/min the average delay is 480 s, and grows up to 616 s

in the case of 6 pkt/min whereas it decreases to 375 s in the

last experiment considered with 8 pkt/min. It is worth noting

that in the experiment with 6 pkt/min, compared to the one

with 8 pkt/min, the average delay decreases by 40%, and the

NET-layer PDR increases by 35%. Conversely, if we consider

the case of the experiment with 6 pkt/min to the one with

4 pkt/min we can see that the average delay decreases by 23%

and the NET PDR increases by 30%. These results stress the

relationship between these two metrics.

In Fig. 8, we finally show the overhead of the protocol

as a function of the traffic generation rate. As expected, for

low traffic (hence fewer generated data packets), the overhead

reaches roughly 100 bits/pkt, increasing up to 350 bits/pkt for

higher traffic, even though the PDR is lower. If we relate these

results to the previous ones, we can state that for networks

with higher loads, even if the MSUN protocol spends more

control bits, the PDR does not increase, in fact it decreases.

This is caused by the cross-interference between data packets

and control traffic, and means that MSUN fails to convert the

extra route establishment and acknowledgement effort into an

effective traffic to the sink.

To sum up these results, we observe that the protocol was
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Fig. 10. Average delivery delay for U-Fetch as a function of the packet
generation rate per node.
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Fig. 11. Overhead for U-Fetch as a function of the packet generation rate per
node.

able to complete the experiments allowing the nodes to ex-

change a reasonable amount of traffic. Thanks to this analysis,

we can draw some conclusions as to how we could improve the

performance of the protocols in future sea trials. More specif-

ically, we can state that the protocol was able to effectively

establish paths joining the nodes and the sink, but probably

these path should be refreshed more often in order to exploit

new links. A considerable number of packets was still in the

buffer of MSUN at the end of the experiments. If we consider

that the protocol was able to create paths among the nodes, that

the data generation rate was not critical for the network and

that the number of data packets transmitted was considerably

high compared to the number of data packets received, a matter

of further investigation is the interplay between MSUN and

the channel access mechanism, currently delegated to a simple

Aloha-based protocol. A possible improvement is to embed

medium access capabilities in MSUN and, by doing this, to

extend the protocol and make it a cross-layer scheme with MAC

functionalities.

3) U-Fetch: For the U-Fetch protocol experiments, we em-

ployed nodes 2 and 3 as sensor nodes (SNs), nodes 1 and 4

as head nodes (HNs) and the gateway buoy (with ID 5) as the

sink. The topology of the network is depicted in Fig. 2(b).

Fig. 9 reports the APP-layer PDR as a function of the traffic

load in pkt/min. For all the experiments the APP-layer PDR

is generally low. The reason is that most of the data packets

generated by the APP layer of the SNs remain in the queue



of the nodes and, due to the unreliable channel conditions,

are never transmitted through the path to the HNs and from

there to the sink. This prevents U-Fetch’s handshake from being

completed successfully. In addition, some data packets received

from the SNs by the HNs remained into the queues of the HNs

and were never delivered to the sink. This happens because the

HNs and the sink are typically unable to establish a connection,

due to the lack of acoustic connectivity between the HNs and

the sink. In particular, many signaling packets used to establish

a connection between a HN and the sink never arrived at their

destination: hence, no connection could be established and the

data packets could not be transmitted, ultimately decreasing the

PDR.

Fig. 10 show the average end-to-end delay express in seconds

as a function of the traffic load. The average end-to-end delay

for the U-Fetch protocol is computed as the time needed for a

data packet to be delivered to a sink node from the time when

the packet was created by a SN. For a low traffic load the delay

is on the order of 100 s. The delay increases considerably (up

to 1000 s) for a packet generation rate of 8 pkt/min. In this

case, some data packets generated by the SNs are delivered

to the sink through the HNs. These packets must wait for the

connection between SN and some HN to be established, and

after that they must walk up the queue of the SNs and be

transmitted successfully to the sink. In turn, this increases the

average delivery delay. The U-Fetch experiments carried out

during CommsNet’13 can be considered somehow suboptimal.

The results are lower than those obtained with the DESERT

simulator in the laboratory. In the trial, we often observed

that, due to bad channel conditions, the HNs were unable to

deliver packets to the sink node, including those required to

establish connections. The CommsNet’13 trials made it possible

to identify potential weak spots in the handshake procedure of

U-Fetch: this will greatly help improve the effectiveness of such

procedures. The most important future step in the development

of U-Fetch is the implementation of a robust mechanism

to rotate the role of HN among the nodes: having such a

mechanism in place is expected to improve the performance

of the protocol considerably, by avoiding that packets get stuck

in head nodes or sensor nodes due to imperfect or unstable

network connectivity.

Fig. 11 reports the overhead in bit/pkt as a function of the

traffic load. This parameter is correlated to the throughput.

Remembering that the highest throughput is achieved for the

highest data generation rate (2 pkt/min), in correspondence of it,

more packets get through to the sink, and the average overhead

per packet decreases.

C. Additional Experiments

In addition to the baseline experiment plan described in

Section III-B, during the sea trials we had the opportunity

to carry out some extra experiments to test the behavior of

the protocols in some specific configuration. In this section we

present two experiments that aim to highlight special difficulties

that the protocols had to face. The results presented concern an

experiment for Uw-Polling and one for MSUN. For each of

TABLE I
EXTRA EXPERIMENTS METRICS.

Uw-Polling MSUN
APP PDR 0.62 0.98
MAC/NET PDR 0.87 0.98
Throughput (pkt/min) 2.6 2.35
Overhead (bit/pkt) 163 251.42

them we provide the list of the nodes involved, some of the

metrics obtained and a brief conclusion.

1) Uw-Polling: The experiment with Uw-Polling involves

the four nodes of LOON, the gateway buoy, one eFolaga and

the ship node. The buoy acts as sink, while all the others nodes

generate data packets. For this specific experiment, the overall

network traffic is set to 4 pkt/min. The main difference between

this experiment and the ones presented in the baseline plan

concern the total number of nodes involved in the transmission

that grows from 5 up to 7. The results of Uw-Polling are

summarized in Table I.

As we can see from the PDR (both at APP-Layer and

MAC-Layer), most of the packets transmitted by the nodes

are correctly delivered to the sink. However, as in the case

of the baseline experiments, the APP-layer PDR is lower than

the MAC-Layer one. This is because some packets remain in

the nodes’ queues without the possibility of being transmitted

to the sink. The overhead is almost equal to the overheads

calculated in the case of the baseline experiments. The delay,

instead, is slightly higher, as more nodes than in the baseline

experiments participated in the polling cycle. As a consequence,

each node had to wait longer for its turn. However, the

throughput experienced is good thanks to the fact that, once a

node reaches its turn, it can transmit the packets in a burst, and

enjoys a contention-free channel. Also in this case, as already

mentioned in the baseline experiments, a fine-tuning of Uw-

Polling’s internal timings may achieve better delivery delays,

possibly at the price of a less robust protocol.

2) MSUN: The experiment with MSUN involves all the nine

nodes in Fig. 1 except the waveglider that was not available.

The experiment was carried out on Sep 14th, at 11:24 pm

with an overall network traffic equals to 3 pkt/min. All the

nodes were set to generate traffic except the node of the LOON

with ID 2 that was set as sink. This experiment is different

from the ones proposed in the baseline analysis because in this

specific case we tested the network with no links blacklisted

via software. The nodes could therefore exploit the shortest

paths to the sink without any software limitation. Thanks to the

reasonably low network traffic load and to the network topology

(all sources were roughly at the same distance from the sink),

the APP and NET PDR are very close to one and almost all the

packets sent are correctly received, with a very low number of

repetitions. The numerical results are summarized in Table I.

This simple experiment shows that, in a network that offers

a direct link from the sources to the sink, MSUN can exploit

them, and deliver packets directly to the destination effectively

with a low overhead. From the log files we discovered also

a drawback of this approach: in this experiment all nodes

sent all data packets directly to the sink, without exploiting



multihop routes. This result is due to the relatively small

distance between all the sources and the sink and to the routing

metric of MSUN that minimizes the number of hops from the

source to the destination. In such conditions a routing protocol

is effectively not needed. In case of packets with errors, MSUN

can offer an ARQ mechanism, but the performance observed

is more related to the status of the channel and to the behavior

of the data link protocols (CSMA based) rather than to the

routing protocol. This consideration must be taken into account

before the deployment and, whenever needed, solved with some

software-level blacklisting of some network links. In any event,

it should be kept in mind that this will not reproduce the

conditions of a multihop underwater network, but rather harsher

conditions, with a higher level of interference among concurrent

transmissions.

IV. CONCLUSIONS

In this paper we presented the CommsNet’13 sea trial

campaign, aimed at testing three protocols for remote data

retrieval, namely Uw-Polling, MSUN and U-Fetch, in a real

world scenario, and under different network configurations. We

presented the protocols in a baseline topology and evaluated,

for each of them, the impact of a real environment on their

behavior compared to expected results according to a previously

published set of simulations. We summarized the experiments

by providing concepts to consider when a user wants to migrate

from a network simulator to a real environment. The results

prove also that the proposed solutions are stable and that

it is possible to use them in the real world, but also that

some additional effort is required to optimize their behavior,

especially in the presence of unfavorable channel conditions.

The experiment was possible thanks to the features offered

by DESERT Underwater and RECORDS, two frameworks

developed to facilitate as much as possible, and in a seamless

way, the migration from network simulators to real world trials.
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