
1

Open-source Suites for Underwater Networking:

WOSS and DESERT Underwater

Paolo Casari, Cristiano Tapparello, Federico Guerra, Federico Favaro,

Ivano Calabrese, Giovanni Toso, Saiful Azad, Riccardo Masiero, Michele Zorzi

Abstract

The simulation and the experimentation of underwater networks entail many challenges, which for

the former are mainly related to the accurate modeling of the channel behavior, while they are typically

logistic in nature for the latter. In this paper, we present our experience with WOSS and DESERT

Underwater, two open-source suites that address both classes of challenges. The suites build upon and

extend the capabilities of ns2 and NS-MIRACLE, two widely known software packages for network

simulation. WOSS endows NS-MIRACLE with the capability to generate realistic channel patterns

by automatically retrieving and processing the environmental boundary conditions that influence such

patterns; DESERT Underwater makes it possible to evolve towards at-sea experiments by reusing the

same code written for simulations, thereby minimizing the effort required for network deployment and

control. Both suites have been widely tested and used in several projects: some examples are provided

in this respect, including an account of some experiments carried out in collaboration with the NATO

STO Centre for Maritime Research and Experimentation (CMRE).

Index Terms

Underwater network protocols; channel impulse response; simulation; experimentation; hardware-in-the-

loop; ns2; NS-MIRACLE; WOSS; DESERT Underwater.



2

I. INTRODUCTION

Simulation and real-life experimentation are two key steps in the development of network

protocols: the former makes it possible to perform several controlled tests, which may however

require an idealized model of one or more system components; the latter is the ultimate proof

that a devised solution is effective, or at all feasible.

This is especially true for underwater acoustic networks, where real-world deployments are

typically subject to many non-ideal effects, that can hardly be fully reproduced in simulations.

In fact, the underwater research community largely conceives real-life experimentation as the

only proof that physical-layer (PHY) signal processing algorithms and network protocols actually

work in practice. However, while the former can be effectively substituted by the recording and

offline processing of channel signatures, no data set exists that provides the channel response

over time for several points of a given area, and that correctly reproduces its correlation in time

and space, as required to properly run realistic network simulations. In addition to the lack of a

widely accepted model for the underwater acoustic channel, the above considerations highlight

the need for i) an easy way to simulate underwater networks over realistic channel responses,

and ii) an efficient method to move from simulations to real-life experiments.

In this paper, we present two open-source suites that tackle these two challenges and that,

together, form a complete and organized solution to approach the study of realistic underwater

networking. The first suite, called the World Ocean Simulation System (WOSS) [1], was origi-

nally released in 2009 under a BSD 3-clause license, followed by two other releases that intro-

duced several new features. The second suite is named DESERT Underwater, where DESERT

stands for “DEsign, Simulate, Emulate and Realize Test-beds.” It was initially developed in

2012 as an extension to the ns2/NS-MIRACLE simulator [2], and was released under a BSD

license as well [3]. Building specifically on NS-MIRACLE, DESERT Underwater provides many

modules that implement medium access control (MAC) protocols, error control schemes, routing



3

protocols and other solutions that cover the remaining layers of the ISO/OSI protocol stack. In

addition, DESERT Underwater implements mobility models to simulate mobile networks, and

includes many examples that showcase DESERT’s features, in part integrated with WOSS’s

functionalities. A conspicuous part of DESERT is devoted to facilitating the transition from

simulations to sea trials, via a hardware-in-the-loop approach that makes it possible to reuse the

same code written for simulations. The user is only required to define an additional set of rules

to convert the internal structures of NS-MIRACLE into bit streams and vice-versa. Version 2 of

DESERT Underwater has been released in April 2014.

The remainder of this paper is organized as follows. WOSS, its main features (which were

available since its first release) and its subsequent improvements will be described in Section II.

DESERT Underwater is described in Section III, along with the experiments that showcase its

capabilities. Finally, Section IV concludes the paper.

II. THE WORLD OCEAN SIMULATION SYSTEM (WOSS)

The World Ocean Simulation System (WOSS) [1] is a framework aimed at improving un-

derwater network simulations through a more realistic account of acoustic propagation. In

addition, WOSS provides a set of routines to facilitate many standard operations, like mobility

management, the conversion among different coordinate systems (e.g., Cartesian to spherical),

and the maintenance of the data structures required for the simulation of acoustic propagation.

WOSS’s main tasks are i) to provide a means to easily query oceanographic databases in

order to retrieve the environmental characteristics that simulation software typically requires for

the reproduction of underwater acoustic propagation in a given area; ii) to provide functions that

process the output of such simulators, in order to facilitate their employment within network

simulation software. In this context, external libraries have been created to bind WOSS to the

PHY layer of the ns2/NS-MIRACLE simulator [2], although WOSS could be linked to any

other software. The current version of WOSS includes all interfaces required to interact with



4

Bellhop [4], a sound propagation simulator based on ray tracing. In the following, we will

describe in more detail how WOSS provides input data to Bellhop and processes its output.

Bellhop requires a number of environmental parameters, including the depth-dependent vari-

ation of the speed of sound, or sound speed profile (SSP, which is related to the refraction of

sound waves) the profile of the sea bottom, and the acoustic properties of bottom sediments,

which influence the pattern and intensity of the bottom reflections. Optionally, Bellhop can

also take the profile of the ocean surface as an input, in order to model surface reflections more

precisely: WOSS can leverage on this opportunity via functions that generate random sea surface

realizations, according to a given surface wave spectrum.1

In addition, Bellhop requires the specification of the transmitter-side electro-acoustic trans-

ducer’s beam pattern, which can be modeled in two ways. In the basic case, the user inputs

the angular aperture of the beam emission, i.e., the lowest and highest angle of departure of the

beams from the transmitter, with respect to the azimuthal plane: this is equivalent to assuming that

the transducer has a flat and unit response over the specified angle span. In the more advanced

configuration, the user can input the full shape of the transducer’s beam pattern. WOSS supports

both modes. Later versions (after v1.2) also allow the user to change the orientation of the beam

pattern arbitrarily, in order to simulate the effect of a node pointing its transducer towards a

specific direction.

To retrieve the required environmental data, WOSS interfaces the network simulator and

Bellhop with oceanographic databases freely available on the Internet (for reference, see also

the data flow summarized in Fig. 1). In particular, WOSS reads the location of the nodes

(latitude, longitude and depth) from the network simulator and then uses this information to query

the databases. For the SSP, WOSS employs the World Ocean Atlas (WOA, http://www.nodc.

1The surface waves realization is typically time-varying, and the user can specify how often a fresh realization should be

drawn.



5

noaa.gov/OC5/WOA09/pr woa09.html) database, which collects a wealth of environmental data

measured during several experiments conducted all around the world; these data include salinity

and temperature samples at typically accepted standard depths (e.g., for sea bottoms with a

maximum depths of 100 m, the standard depths are 10, 20, 30, 50, 75 and 100 m) and can be used

to compute the SSP through standard equations of state such as the MacKenzie or Del Grosso

equations. In the WOA database, the measurements are divided by location and month or season

of the year when the measurement was performed: WOSS automatically selects the correct

dataset and transfers the related samples to Bellhop. Bathymetry samples are taken by default

from the General Bathymetric Chart of the Oceans (GEBCO, www.gebco.net), a public database

with a resolution of 30 arc-seconds. To generate a bathymetry profile, WOSS computes the great

circle curve that joins the points of coordinates xT = (θT , φT ) and xR = (θR, φR), where θT , φT ,

θR and φR are the latitude and longitude of the transmitter and the receiver, respectively. Starting

from xT , WOSS samples the curve in steps of equal distance ∆s along the great circle, yielding

a set of points xi = (θi, φi). The value of ∆s can be selected by the user. For each point xi, the

bathymetry database is queried to retrieve the respective depth of the sea bottom. If no data is

found for the exact coordinates of xi, the depth belonging to the closest (with respect to the great

circle distance metric) geographical coordinates available is returned. Along with the bathymetry,

WOSS obtains the geophysical parameters of the bottom sediments from the National Geo-

physical Data Center’s Deck41 dataset (http://www.ngdc.noaa.gov/mgg/geology/deck41.html).

In addition to standard databases, WOSS supports custom databases, allowing users to input

their own environmental data and thereby improving the accuracy of WOSS when modeling a

specific area.

The output of Bellhop is a solution to the propagation equations over a column of water, or

a restricted section thereof. When performed over a large set of points throughout the water

column, a typical simulation outcome is shown for reference in Fig. 2. The figure reports the

acoustic attenuation in dB affecting the transmission of a 25 kHz tone, as a function of the



6

depth of the receiver and of its planar distance (or range) from the transmitter, which is located

on the left side of the picture at a depth of 50 m. Red hues represent a lower attenuation,

hence a stronger signal. The shape of the sea bottom is rendered in brown. The environmental

parameters employed are representative of Tyrrhenian Sea waters in summer. Fig. 2 shows that a

high acoustic signal level is expected in the proximity of the transmitter, but such level decreases

for increasing range, and beyond a range of 6 km only a minor portion of the water column is

actually insonified.

In fact, the data processed by WOSS is even more detailed than in this figure, as it contains the

full set of ray arrivals computed by Bellhop, characterized by their respective complex amplitude

and arrival delay. The latter can be used to infer the propagation delay of the whole signal from

the transmitter. The standard processing applied by WOSS involves the following steps:

• The power of the arrivals is compared against a reception threshold: those arrivals that fall

below the threshold are filtered out: this models a generic preamble detection process at the

receiver, which is assumed to have finite sensitivity;

• The arrivals are binned by computing the complex sum of all arrivals within contiguous

windows of 50 µs; this models the fact that very close arrivals are practically indistinguish-

able;

• The arrivals within a maximum delay τmax concur to the computation of the useful signal

energy, whereas all arrivals beyond τmax are assumed to cause self-interference. This models

the receiver-side signal processing capability to extract useful energy from a limited portion

of the input signal, and helps reproduce the receiver performance limitations due to the

channel delay spread.

In WOSS, the noise level is determined through the empirical formulas in [5], a common

approach for the simulation of noise affecting underwater communications. User-custom noise

realization databases are also supported. We recall that both the noise power calculations and



7

Bellhop’s ray tracing procedure require to specify the frequency of the transmitted signal. In the

current version of WOSS, this frequency is computed as the geometric mean of the lower and

upper frequency limits of the acoustic spectrum band in use.2

A. Advanced WOSS features

The most recent version of WOSS (v1.3.5) supports time-varying environmental parameters. In

fact, these parameters, e.g., the temperature of the water at different depths, may change during

periods of time comparable to that of a typical networking experiment (e.g., several hours), and

these variations should be tracked in order to provide more realistic results. As an example,

assume that a user wants to cycle through three different SSPs, spanning a total duration of one

day. This scenario is depicted in Fig. 3. At time 00:00, the SSP on the left in the figure is used.

This SSP is substituted by the second SSP at time 08:00 and by the third SSP at time 16:00.

After a further time interval of 8 hours, the SSP is changed back to the first SSP on the left and

the cycle begins again. WOSS can be instructed to vary the SSP over time as described above

and, in addition, it allows the user to specify how to compute the transition from the current

SSP to the next one.

Another extension of WOSS, presented in the last version, supports the simulation of mobile

networks. These models affect the computations performed by WOSS, as a position update may

trigger a channel response update.3 Currently, WOSS natively implements a waypoint mobility

2We remark that this approximation is valid only when the system bandwidth can be assumed to be “narrow” with respect

to the carrier frequency in use. Computing the impulse response at different frequencies would be possible, but would also

represent a significant computational burden, and is left as a future extension.

3WOSS knows exactly where a given transmitter and receiver were located when the last channel response was computed. If

neither node moved away of that location farther than a tunable distance parameter, WOSS assumes that the channel remained

static and does not update the channel response. The default value of the distance parameter that triggers the update is 0;

however, the user can fully control the update process by changing this value, and thereby trade off the reproduction accuracy

of a space/time-varying channel for the network simulation speed.



8

model, whereby the user can specify a sequence of locations that a node will traverse, the

movement speed between any two such waypoints, and an optional pause time when a waypoint

is reached. In addition, WOSS can handle channel simulations in networks where one or more

nodes move according to either of the following models, embedded in NS-MIRACLE:

• Gauss-Markov [2], which generates random-waypoint trajectories with a given self-correlation

factor between 0 (full randomness) and 1 (linear movement);

• Leader-Follower [6], or group mobility model, whereby one or more nodes (called followers)

can be instructed to “stay close” to the trajectory of a given node (called leader) via a tunable

attraction factor;

• Linear+Drift, which assigns to the nodes a deterministic speed vector, perturbed by time-

varying “noise” vectors that model the impact of currents on the movement of the nodes.

We remark that the management of node mobility and of time-varying environmental parameters

(including surface wave realizations) implies that WOSS supports time-varying channel impulse

responses. The user is given full control over the events that trigger the computation of a fresh

channel impulse response.

As a final option to improve the realism of the performed simulations, WOSS can import

performance figures that summarize the physical transmission schemes in use, e.g., derived from

offline simulations of a full-fledged transmitter-receiver chain. Such figures are typically provided

in the form of tables, and make it possible to translate metrics that NS-MIRACLE can measure

(e.g., signal-to-noise ratio, interference power, noise power, and the overlap between interfering

and wanted packets) into the packet error probability of a given transmission. An example of this

procedure has been used in the “Robust Acoustic Communications in Underwater Networks”

(RACUN) project, and is described in [7].



9

B. WOSS – Summary and Conclusions

WOSS is a powerful tool, that makes it possible to employ realistic underwater channel patterns

within network simulators. It was developed as a complement to the popular software ns2 and to

its NS-MIRACLE extensions, but also lives as a stand-alone package that can be interfaced to any

simulation tool. Along with Bellhop, it generates channel realizations that are strongly tied with

the oceanographic parameters of the simulated communications area, and therefore helps achieve

better simulation accuracy than, e.g., simple link-budget equations for underwater acoustic links.

Moreover, WOSS’s support for custom databases makes it possible for users to input their

own oceanographic measurements, thereby improving the characterization of a specific network

scenario. The support for real transducer beam patterns, for realistic surface wave realizations

and for time-varying underwater features improve such accuracy even further. As such, WOSS

allows the designer to accurately assess the performance of underwater network protocols, before

actually moving to sea trials: without WOSS, the selection of environmental parameters from

public or custom oceanographic parameters, the simulation of underwater acoustic propagation,

the derivation and processing of channel impulse responses, and their inclusion into underwater

network simulators would have to be done by hand, resulting in a much more cumbersome

simulation process and requiring detailed knowledge of acoustic propagation phenomena.

The WOSS project was kicked off in 2009, and has been continuously supported ever since.

Recently, WOSS has been adapted to the ns3 simulator [8], and is currently undergoing the code

review phase required to make it part of standard ns3 releases.4

C. Related work

A first effort to include the output of the Bellhop ray tracing software into the network

simulator ns2 is found in [9], where Bellhop runs are manually carried out to retrieve the

4In the meantime, the source code of WOSS for ns3 can be requested to the author directly [1].



10

channel impulse response (CIR) associated to the link between each pair of nodes. Such CIR is

then maintained constant throughout a network simulation run.

The Underwater Acoustic Networks (UAN) framework released with the ns3 simulator [8]

provides PHY, Medium Access Control (MAC), as well as mobility and energy consumption

models for Autonomous Underwater Vehicles (AUVs). The propagation model in UAN is based

on link budget equations involving spreading loss and absorption loss [5]. A more advanced

model, based on Bellhop [9], used to be available as well. However, the user was required

to manually enter all needed environmental parameters, which made it impossible to support

dynamical environments, where the nodes move or the environmental conditions change over

time. In addition, no support to real transducer beam patterns is declared. The UAN PHY model

based on Bellhop is currently not maintained in the ns3 release, and must be requested from

its authors. Unlike the work in [9] and the PHY model of the ns3 UAN framework, WOSS

automatically retrieves environmental features given a user-specified period of the year and the

geographical location of the nodes, and updates the power-delay profile of the channel among any

two nodes automatically, in the presence of mobility or time-varying environmental conditions.

In addition, the empirical model used by UAN [5] is also available in WOSS as a fallback

solution.

The work in [10] employs the CIRs provided by Bellhop to test different modulation schemes

and receiver-side signal processing techniques, and provides insight into the performance of these

techniques in several scenarios.

In [11], the Mime channel simulator is presented, where the data employed to generate CIRs

is recorded during sea trials. This approach skips the intermediate step performed by Bellhop

(which relates environmental features to the CIR) and has the further advantage of incorporating

Doppler spread into the generated CIRs. On the other hand, its main disadvantage is that the

simulator can only replicate what has been actually measured at sea.



11

III. DESERT UNDERWATER: A FRAMEWORK TO DESIGN, SIMULATE AND REALIZE

TESTBEDS FOR UNDERWATER NETWORK PROTOCOLS

DESERT Underwater has been presented in [3] as a collection of libraries created to support

the design and implementation of underwater network protocols. It has been released with the

objective of distributing several protocols for underwater networking, while at the same time

speeding up the transition from simulations to sea trials. The latter is achieved by integrating

the commands required to communicate with real modems into specific interface modules, thus

permitting the reuse of the same protocol code already written for simulations.

DESERT is based on the well established ns2 simulator and on its NS-MIRACLE exten-

sions [2]. In particular, it follows the modular approach of the latter, which has been designed

to simulate nodes whose logical architecture is as close as possible to what is typically found on

actual devices. To this end, it provides many modules that implement protocols at all layers of

the ISO/OSI protocol stack, most of which have also been tested in several sea trials. In addition,

in order to simulate real underwater networks with high fidelity, DESERT Underwater comes

with mobility models that reproduce realistic mobility patterns, and provides many examples

that showcase DESERT’s features, in part integrated with the functionalities offered by WOSS.

During the first year of use, DESERT has been successfully tested with several modems (e.g.,

EvoLogics S2C and White line modems [12], WHOI microModems, Develogic modems) for the

real-life implementation of underwater protocols, in both static and mobile networks. Moreover,

DESERT has been successfully used not only on desktop PCs and laptops, but also on embedded

systems such as the Gumstix, Pandaboard, IGEPv2, NetDCU, RaspberryPi and UDOO platforms,

making it possible to realize fully distributed and low-power testbeds. Altogether, these features

make DESERT an effective solution for realizing experiments by reusing the same protocol code

already written for simulations.

DESERT Underwater has been adopted in several research projects (e.g., see the Related Work



12

and Acknowledgement pages in the DESERT web site [3]) and received a positive consideration

from the underwater research community. However, the size of the source code and initial work

required to install ns2 and the different software on which DESERT depends can still be perceived

as an obstacle by a first-time user. Given this, we have been working on different aspects of its

implementation and we have extended its functionalities, thanks to the knowledge acquired after

one year and a half of experience with our framework. In the new release, we overcome the

limitations of the previous version and we propose a new set of features that make the software

more robust and user-friendly. In particular, a considerable amount of work has been done in

order to make the installation of the software and its dependencies automatic, so that it does not

require a lot of effort. At the same time, we have efficiently organized the installation procedure

in separate modules, so that experienced users can easily extend it to accommodate their specific

requirements. Following this approach, we also provide different installer modules, suitable for

different hardware architectures (e.g., the Gumstix, RaspberryPi and UDOO platforms cited

above). Thus, one of the primary objectives of DESERT Underwater, i.e., using the same code

both in simulation and in real underwater networks, has been extended to a broad range of

devices. Moreover, we revised the modules of DESERT v1 to accommodate the features of the

new release, extended the set of network protocols released with DESERT, and improved the

support to acoustic modem architectures.

Finally, the functionalities offered by DESERT have been extended with a remote control

framework called RECORDS [13], that provides a set of primitives to remotely control the

hardware modems, and thus the network operations.

The improvements and additional features that we implemented have been packed together

into DESERT Underwater v2, the next public release of our framework that is available for

download at the DESERT Underwater web site [3].

In what follows, we focus on the description of the new control framework for acoustic

modems and present two experiments where DESERT proved itself as a viable solution to move



13

from simulation to real life experimentation.

A. RECORDS: a Remote Control Framework for Underwater Networking Experiments

Since the earliest development of DESERT, while working with deployed underwater networks

we experienced the need for a control framework to easily interact with the modems, and to

provide a backup communication mechanism in case of ns2 failures. To this end, a first proof-of-

concept with limited capabilities (broadcast messages and ns2 start/kill) was implemented and

successfully used in two sea trials, first during the test of the SUN protocol in Berlin in 2012 in

collaboration with EvoLogics [14], and then during the CommsNet12 trials in La Spezia (Italy), in

collaboration with the NATO STO Centre for Maritime Research and Experimentation (CMRE).

Given these results, in conjunction with the second major release of DESERT Underwater we

decided to re-design it and expand its capabilities, resulting in a new software called RECORDS,

which is thoroughly described and evaluated in [13]. In what follows, we briefly summarize the

idea behind its implementation.

The control framework is entirely written using scripting languages, namely the Tool Command

Language (Tcl), Expect and the Bourne Shell, and is released under a BSD 3-clause license. It is

composed of several independent modules that interact via TCP sockets, resulting in a portable

and stable software, which requires negligible system resources.

The main functionalities offered by the control framework are strongly related to DESERT

and remotely allow to:

• Start ns2, with the selection of the script to run and its input parameters;

• Get the status of ns2, with detailed indication about the running instances of ns2 or about

the state of a specific run (i.e., running, completed or never started);

• Stop ns2, with the selection of a specific instance or all of them.

Given the broadcast nature of the underwater channel, it is possible to specify the target of the

control message, from the complete network to a single node.



14

In addition to the DESERT-specific tasks, the control framework can also send native com-

mands to the modem either directly or remotely, set several parameters of the nodes (such as the

source level, id, system clock, internal framework parameters, enable/disable the error control

mechanism), check the status of the nodes (battery level, free space on the storage devices,

temperature, CPU consumption, etc.), read local and remote log files, start/stop a random traffic

generator for testing purposes (either at boot time or on demand) as well as reset, reboot and

turn off the modem.

The control framework can be started directly at boot time and can be configured to be

permanent, i.e., to be automatically restarted in case of errors (socket failures, etc.). By combining

all these functionalities, it is possible to use the control framework to send text messages between

the nodes, thus realizing a chat service between different users: this service can live in parallel

to DESERT experiments by sharing the same acoustic channel. Moreover, the messages can be

sent to the destination either directly or through multiple hops.

The control framework provides additional functionalities that make it possible to simulate a

given network topology by forcing specific packet error rates among selected nodes, and can

set independent packet error rate values for each link. These parameters can be set before the

simulation and changed in real time. It is also possible to randomly delay the transmission of

control packets and to adapt this time interval dynamically.

To deliver remote messages, the framework relies on two algorithms that can be selected by

the user. For each message sent, it is possible to choose between a static source routing protocol

and a flooding mechanism. Different addressing modes are supported, so that each packet can

be sent either in broadcast to all nodes or to a specific subset of destinations. The amount of

traffic in the network is limited via several mechanisms: a time-to-live for the flooding scheme,

a user-defined path for static routing, and duplicate packet detection and rejection for both of

them.

Finally, the control framework offers a module that simulates the behavior of a user. This



15

module can be employed for several purposes, such as the setting of boot-time modem parameters

and the reset of buffers before an experiment is started.

B. Example of Experiment

In this section we provide further insight on the effectiveness of the DESERT Underwater

libraries for the field experimentation of underwater protocols. We focus on two experiments

carried out during the CommsNet13 trials, organized by CMRE in the gulf of La Spezia, Italy, in

September 2013. The first experiment tests a controlled access protocol named Uw-Polling [15]

under different data packet generation rates, whereas the second experiment involves MSUN,

a multihop forwarding protocol based on source routing [7]. The typical complete deployment

topology for this experiment is shown in Fig. 4, and involves bottom-mounted nodes, a gateway

buoy, and several autonomous systems.

For the Uw-Polling experiment, we set the gateway buoy to be the sink, and M1–M4 to be

sensor nodes, which generate packets at a rate of 0.75, 1, 1.5 or 2 pkt/min/node, depending on

the specific experiment. Fig. 5(a), reports the throughput per node (in pkt/min) as a function of

the packet generation rate per node. The histogram shows that the throughput is almost equal

to the packet generation rate per node for the two lowest traffic values, implying a high packet

delivery ratio. However, after achieving its maximum for an intermediate packet generation rate

per node, the throughput decreases. The post-processing of the experiment logs reveals that this

is due to a number of packets remaining in the queues of the nodes at the end of the experiment,

and effectively counted as lost. The cause is that the packets have to wait longer in the queue

of the nodes as the packet generation rate increases, as a consequence of the controlled access

mechanism. This fact is shown in Fig. 5(b).

We now consider a multihop routing experiment, which was carried out during the night

between Sep 15 and Sep 16, 2013. This experiment involved 5 nodes, and lasted for nine hours

of uninterrupted operations. Two Folaga AUVs were deployed near the sea bottom at about the



16

locations denoted by the white marks in Fig. 4, and generated packets at a rate of 1 pkt/min/node.

The LOON node M3 was the sink; nodes M1 and M4 acted as relays and did not generate packets.

We remark that the Folagas and the sink do not hear one another, hence the packet delivery must

happen through one of the two relays, typically the closest one. During the nine hours of the

experiment, about 1000 packets were generated, leading to about 3000 transmissions, including

relaying and retransmissions. The packet delivery ratio achieved in this experiment was around

0.6, for an average throughput of about 1.24 pkt/min. Before the end of the experiment, the

modem control framework was used to query the status of all nodes, which confirmed that the

experiment was still running. This confirms the robustness of the DESERT Underwater libraries

and of the control framework itself.

C. Summary of DESERT Underwater

DESERT Underwater is a useful research tool to develop, test and analyze real world ap-

plications for underwater communications. Based on the well known network simulators ns2

and NS-MIRACLE, it provides a comprehensive set of algorithms and tools to simulate various

aspects of a general underwater network. Moreover, thanks to specialized interfaces with the

modems, it allows the user to employ the same code both for the simulation and for the field

experimentation of an underwater network. Without this structure, it would be necessary to

replicate the network protocol code into a specific software package to be run by underwater

communications hardware, effectively doubling the development effort and slowing down the

capability to perform a sea trial after completing network protocol simulations.

The first release of the DESERT Underwater libraries has been presented in 2012 and, since

then, has received positive consideration from the research community and has been used in

several research projects. New features and extensions have been developed during the last year

and have been made part of DESERT Underwater v2, which has been released recently and can

be downloaded from the web site in [3]. Along with DESERT Underwater, we also released the



17

modem control framework RECORDS [13]. As explained in Sections III-A and III-B, RECORDS

is key to several functions, such as checking that the nodes are idle and ready before starting

an experiment, checking the quality of the links, and starting a given experiment on all nodes.

All these functions can be performed remotely, by transmitting the commands via acoustic

communications from a radio-controlled node. Without the framework, these tasks would require

a direct cable or radio link to all underwater nodes.

D. Related work

Hardware-in-the-loop experiments reusing code programmed for simulations constitute a well

known concept, and modern network simulators such as ns3 [8] were designed to also help their

users through this task. In the context of underwater communications, one of the first systems

reusing simulation code into real experiments is Aqua-TUNE [16], a testbed partially designed

around the code of the University of Connecticut’s Aqua-Net system, which also provides a

simulation mode via a recent addition called Aqua-Net Mate. In the first implementation of

Aqua-TUNE, the network was composed of radio-controlled kayaks, later evolved into buoys.

The micro-controller installed in the nodes employs an embedded Linux distribution to run the

network protocol code and to control the nodes via an external radio link.

The SUNSET framework [17] was developed starting in 2010, and first released in May 2012.

Broadly speaking, SUNSET and DESERT Underwater have one similar functional objective,

i.e., to help users operate the transition from simulation to experimentation with real hardware.

However, the two frameworks are different in several respects. For example, DESERT Underwater

comes with a wide set of protocols and network modules, some ready for experimentation, some

meant mainly for simulations; comparatively fewer protocols were released with SUNSET, which

mainly focused on the support for emulation and experimentation. In any event, both DESERT

and SUNSET are interoperable with NS-MIRACLE, as both stem from it. SUNSET implements

a more efficient real-time scheduler which reduces the RAM and CPU usage with respect to



18

the one provided with ns2, and proves useful on devices with limited processing capabilities;

on the other hand, this requires the general NS-MIRACLE user to explicitly call SUNSET’s

real-time scheduler when interfacing the code to underwater modems; DESERT hinges on ns2’s

real-time scheduler, which may be less efficient but requires no change to the scheduler calls

in the protocol code, when moving from simulation to field experimentation. Both DESERT

and SUNSET rely on NS-MIRACLE’s native cross-layer messages for exchanging information

among the layers of the network protocol stack. Starting from version 2 (June 2013), SUNSET

provides support for publish-subscribe interactions. DESERT v1’s functions for converting NS-

MIRACLE packet structures into actual bit streams and vice-versa are embedded within the

modem interface, and are thus less modular than SUNSET’s Packet Converters. DESERT v2’s

version of the same functions are inspired to the Packet Converters, and are complemented by a

completely new Adaptation Layer module [7], which automatically fragments and re-assembles

the packets whenever the PHY Service Data Unit (PSDU) is shorter than the packet length.

Finally, our distributed modem control framework RECORDS has been explicitly designed as

a stand-alone module released along with DESERT, in order to create a simple, lightweight

module that does not hinge on ns2. Its SUNSET counterpart called the back-seat driver, instead,

runs a SUNSET instance based on ns2 [18] and employs the same protocols implemented in

SUNSET to deliver remote commands. The back-seat driver has not been publicly released yet.

A more recent implementation of an underwater acoustic testbed has been performed by

the University of Buffalo [19], with system flexibility and modularity in mind. The testbed is

reconfigurable from the network stack down to the transmit waveform, and the authors plan to

make it accessible to the underwater community at large. The testbed also supports laboratory

experiments via a channel emulator employing Matlab processing to reproduce the behavior of

an acoustic channel.

In Oct. 2013, the National University of Singapore’s Applied Research Lab and the SubNero

company released v1.1.1 of UNetStack [20], a Java/Groovy implementation of an underwater



19

networking stack based on the agent-oriented programming (AOP) paradigm provided by the

open-source fjåge framework. Roughly speaking, UNetStack’s agents are equivalent to network

layers, with the difference that agents are not forced into any hierarchy. A UNetStack simulator

makes it possible to test the developed software and agents. UnetStack-compatible software-

defined modems embed a version of this simulator, so that the simulated software can be used

directly on the modems. No specific compatibility with other commercial modems is mentioned:

in this respect, DESERT v2 takes a different approach, as it can be automatically cross-compiled

for use on the embedded computers typically integrated within underwater modems, or externally

connected to them. Another difference between UNetStack and DESERT is that the former

allows the user to program and test different modulation and coding schemes at the physical

layer, whereas the latter focuses on the network protocol stack.

IV. CONCLUDING REMARKS

In this paper, we presented two open-source frameworks, WOSS and DESERT Underwater,

that respectively address the need to bring realistic channel impulse responses into underwater

network simulators, and the need for an efficient transition from simulations to underwater net-

working experiments. Both frameworks are based on the widely known ns2 and NS-MIRACLE

simulation engines, which are extended i) to provide a realistic characterization of the acoustic

channel via WOSS, and ii) to increase NS-MIRACLE’s protocol count with many underwater

network protocols via DESERT Underwater, which also supports the porting of protocol sim-

ulation code into real experiments. A framework that remotely controls the execution of the

experiments via acoustic commands complements DESERT Underwater in the field.

Our software has been widely tested in collaboration with major institutions and modem

manufacturers in the field, making up a complete solution for underwater simulations, laboratory

activities and at-sea experiments.



20

ACKNOWLEDGMENTS

This work was supported in part by the European Commission under the 7th Framework

Programme (Grant Agreement 258359 – CLAM) and by the Italian Institute of Technology

within the Project SEED framework (NAUTILUS project).

The authors would like to thank Loris Brolo for developing U-Fetch, a cross-layer MAC/routing

protocol which is part of DESERT Underwater v2.

Some features of DESERT Underwater and WOSS have been added thanks to several dis-

cussions with the partners of the RACUN project (especially Roald Otnes, Paul van Walree

and Michael Goetz) and with the partners of the CLAM project (especially Arne Lie, Roberto

Petroccia and Daniele Spaccini). The MSUN protocol was developed in the context of the multi-

national EDA RACUN project and experimented during CommsNet13 with the permission of

the RACUN consortium.

Special thanks go to the NATO STO CMRE, La Spezia, Italy, for the organization of the

CommsNet12 and CommsNet13 trials and for their invitation to participate.

REFERENCES

[1] F. Guerra, P. Casari, and M. Zorzi, “World Ocean Simulation System (WOSS): a simulation tool for underwater networks

with realistic propagation modeling,” in Proc. of ACM WUWNet 2009, Berkeley, CA, Nov. 2009, WOSS is available online

at the URL http://telecom.dei.unipd.it/ns/woss/.

[2] N. Baldo, M. Miozzo, F. Guerra, M. Rossi, and M. Zorzi, “Miracle: the multi-interface cross-layer extension of ns2,”

EURASIP J. of Wireless Commun. and Networking, 2010. [Online]. Available: http://www.hindawi.com/journals/wcn/aip.

761792.html

[3] R. Masiero, S. Azad, F. Favaro, M. Petrani, G. Toso, F. Guerra, P. Casari, and M. Zorzi, “DESERT Underwater: an

NS-Miracle based framework to DEsign, Simulate, Emulate and Realize Test-beds for Underwater network protocols,” in

Proc. of IEEE/OES OCEANS, Yeosu, Korea, May 2012, DESERT Underwater is available at the URL http://nautilus.dei.

unipd.it/desert-underwater.

[4] M. Porter et al., “Bellhop code,” Last time accessed: May 2014. [Online]. Available: http://oalib.hlsresearch.com/Rays/

index.html

[5] R. Urick, Principles of Underwater Sound. New York: McGraw-Hill, 1983.



21

[6] M. Rossi, L. Badia, N. Bui, and M. Zorzi, “On group mobility patterns and their exploitation to logically aggregate

terminals in wireless networks,” in IEEE VTC Fall, Dallas, TX, US, September 2005.

[7] C. Tapparello, P. Casari, G. Toso, I. Calabrese, R. Otnes, P. van Walree, M. Goetz, I. Nissen, and M. Zorzi, “Performance

evaluation of forwarding protocols for the RACUN network,” in Proc. ACM WUWNet, Kaohsiung, Taiwan, Nov. 2013.

[8] ns3 Network Simulator, http://www.nsnam.org/, Last time accessed: May 2014.

[9] N. Parrish, L. Tracy, S. Roy, P. Arabshahi, and W. Fox, “System design considerations for undersea networks: link and

multiple access protocols,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1720–1730, Dec. 2008.

[10] L. M. Wolff, E. Szczepanski, and S. Badri-Höher, “Acoustic underwater channel and network simulator,” in Proc. MTS/IEEE

Oceans, Yeosu, South Korea, May 2012.

[11] R. Otnes, P. van Walree, and T. Jenserud, “Validation of direct and stochastic replay using the Mime acoustic communication

channel simulator,” in Proc. UComms, Sestri Levante, Italy, Sep. 2012.

[12] EvoLogics GmbH, “Underwater SC2R acoustic modem series,” Last time accessed: May 2014. [Online]. Available:

http://www.evologics.de/en/products/acoustics/index.html

[13] G. Toso, I. Calabrese, P. Casari, and M. Zorzi, “RECORDS: a remote control framework for underwater networks,” in

Proc. IEEE/IFIP Med-Hoc-Net, Piran, Slovenia, Jun. 2014.

[14] G. Toso, R. Masiero, P. Casari, O. Kebkal, M. Komar, and M. Zorzi, “Field experiments for dynamic source routing: S2C

evologics modems run the SUN protocol using the DESERT Underwater libraries,” in Proc. MTS/IEEE Oceans, Hampton

Roads, VA, Oct. 2012.

[15] F. Favaro, P. Casari, F. Guerra, and M. Zorzi, “Data upload from a static underwater network to an AUV: Polling or

random access?” in Proc. MTS/IEEE Oceans, Yeosu, Korea, May 2012.

[16] Z. Peng, S. Le, M. Zuba, H. Mo, Y. Zhu, L. Pu, J. Liu, and J. Cui, “Aqua-TUNE: A testbed for underwater networks,” in

Proc. IEEE/OES Oceans, Santander, Spain, Jun. 2011.

[17] C. Petrioli, R. Petroccia, and D. Spaccini, “SUNSET version 2.0: Enhanced Framework for Simulation, Emulation and

Real-life Testing of Underwater Wireless Sensor Networks,” in Proc. ACM WUWNet, Kaohsiung, Taiwan, Nov. 2013.

[18] R. Petroccia and D. Spaccini, “Implementing a back-seat driver to remotely control the experiments in an underwater

acoustic sensor network,” in Proc. MTS/IEEE OCEANS, Bergen, Norway, Jun. 2013.

[19] H. Kulhandjian, L.-C. Kuo, T. Melodia, D. A. Pados, and D. Green, “Towards experimental evaluation of software-defined

underwater networked systems,” in Proc. UComms, Sestri Levante, Italy, Sep. 2012.

[20] The NUS ARL and SubNero, “UNET–The Underwater NETworks project,” Last time accessed: May 2014. [Online].

Available: http://www.unetstack.net

[21] F. Favaro, L. Brolo, G. Toso, P. Casari, and M. Zorzi, “A study on remote data retrieval strategies in underwater acoustic

networks,” in Proc. of MTS/IEEE OCEANS, San Diego, CA, Sep. 2013.



22

Paolo Casari [SM’13] (casarip@dei.unipd.it) received a Ph.D. in information engineering

in 2008 from the University of Padova, where he is currently a postdoctoral research fellow.

He has been actively researching cross-layer design for MIMO ad hoc networks and wireless

sensor networks (WSNs). After a stay at the Massachusetts Institute of Technology in 2007,

he started working on underwater acoustic networks, which is now his main research interest.

He is currently involved in several projects related to underwater networking, and was technical

manager of the Italian WISE-WAI and NAUTILUS projects. He also collaborates with Consorzio

Ferrara Ricerche (CFR) as a research fellow. He has been part of the TPC of several international

conferences, and has been guest editor for the Hindawi Journal of Electronics and Computer

Engineering Special Issue on Underwater Communications and Networking.

Cristiano Tapparello [M’12] (cristiano.tapparello@gmail.com) received the M.Sc. degree

(with honors) in Computer Engineering and the Ph.D. degree in Information Engineering from

the University of Padova, Italy, in 2008 and 2012, respectively. In 2011, he visited the Center for

Wireless Communication and Signal Processing Research (CWCSPR) at the New Jersey Institute

of Technology (NJIT), Newark, NJ, where he performed research on the design of networking

protocols for energy-harvesting wireless networks. From Jan. 2012 to Oct. 2013 he has been

a Postdoctoral Researcher at the Department of Information Engineering at the University of

Padova. He is currently a Postdoctoral Research Associate in the Wireless Communications and

Networking Group (WCNG) in the Department of Electrical and Computer Engineering at the

University of Rochester, NY. His research interests include stochastic modeling and optimization

of wireless systems, energy scavenging solutions for wireless sensor networks, and the design

and implementation of mobile cloud computing systems and practical algorithms for constrained

embedded systems.

Federico Guerra (federico@guerra-tlc.com) received the Laurea Specialistica degree (M.E.)



23

in Telecommunications Engineering in 2008 from the University of Padova, Italy. Shortly there-

after, he joined the research team of Consorzio Ferrara Ricerche (CFR) under the direction of

Professor M. Zorzi. During this time, he was involved in the design of software for the simulation

and performance evaluation of underwater acoustic networks. He is one of the developers

of the MIRACLE libraries, a well known extension that brind cross-layer capabilities multi-

interface simulation capabilities into NS2. He is the developer and maintainer of the World

Ocean Simulation System (WOSS). He was involved in the CLAM and the NAUTILUS projects

and in collaborations with the NATO CMRE related to MAC analysis and protocol design. In

March 2011 he joined u-blox, a leading fabless semiconductor provider of embedded positioning

and wireless communication solutions, as Software Engineer. Since May 2011 he has also

collaborated with CFR as a consultant on underwater acoustic network simulation topics.

Federico Favaro (favarofe@dei.unipd.it) received both the bachelor and master degree in

telecommunications engineering in 2008 and 2011, respectively. Shortly thereafter, he joined the

Department of Information Engineering (DEI) of the University of Padova as a research engineer,

and worked on several aspects related to the simulation and experimentation of underwater

networking protocols. His main research interests encompass the implementation and testing of

Medium Access Control protocols and software interfaces between simulation software and actual

modems, which he performed and employed in the context of several projects and experimental

trials at sea.

Ivano Calabrese (icalabre@dei.unipd.it) received the Bachelor and Masters Degree in Telecom-

munication Engineering from the University of Padova, Italy, respectively in 2009 and 2012.

Since 2012 he works as a research engineer and software developer for Consorzio Ferrara

Ricerche, Italy. In 2014 January he started a collaboration with Patavina Technologies s.r.l. (Italy)

within the AllSeen Alliance consortium (LINUX FOUNDATION collaborative Project). He



24

collaborated actively in several research projects such as RACUN (European Defence Agency),

NAUTILUS (IIT Project SEED program) and took part in several experimental campaigns on

underwater communication sponsored by the NATO CMRE (La Spezia, Italy).

Giovanni Toso (tosogiov@dei.unipd.it) received a Bachelor and Masters Degree in Computing

Engineering from the University of Padova, Italy, respectively in 2009 and 2011. In 2012, he

worked as a research engineer and software developer for Consorzio Ferrara Ricerche, Italy. In

2013, he joined the School of Information Engineering of the University of Padova, where he is

currently a Ph.D. student. His research interests cover the design, analysis, evaluation and real-

world experimentation of protocols for underwater acoustic networks. He collaborated actively

in several projects related to underwater networks, such as CLAM (EU FP7), RACUN and the

Italian NAUTILUS project.

Saiful Azad (sazadm684@gmail.com) received his B.Sc. in Computer and Information Tech-

nology at IUT, Bangladesh, his M.Sc. in Computer and Information Engineering at IIUM,

Malaysia, and his PhD in Information Engineering from the University of Padova, Italy, in

2013. After the completion of his PhD, he joined the Department of Computer Science at

the American International University–Bangladesh (AIUB) as a faculty member. His work on

underwater acoustic networks started during his PhD program and is still his main research

focus. His interests also include the design and implementation of communication protocols for

different network architectures, QoS issues, network security, and simulation software design.

Riccardo Masiero (masieror@dei.unipd.it) received both his Bachelor degree in Information

Engineering and his Masters degree in Telecommunication Engineering from the University of

Padova (Italy) in 2005 and 2007, respectively. In April 2011, he completed the PhD program in

Information Engineering, also at the University of Padova. During the PhD, his research activity



25

has been focused on distributed techniques for data collection in Wireless Sensor Networks

(WSNs). In 2010, he carried out a six-month research activity at INRIA, Sophia Antipolis

(France) as a visiting PhD student within the MAESTRO team. During that period he focused

his activity on distributed optimization techniques for Delay Tolerant Networks (DTNs). As

a post-doc in Padova since 2011, his research activity focused on underwater networking, in

the context of the the NAUTILUS and RACUN projects. He is one of the project leaders and

developer of the DESERT Underwater libraries.

Michele Zorzi [F’07] (zorzi@dei.unipd.it) received his Laurea and Ph.D. degrees in electrical

engineering from the University of Padova, Italy, in 1990 and 1994, respectively. During academic

year 1992-1993, he was on leave at the University of California, San Diego (UCSD). After being

affiliated with the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy, the

Center for Wireless Communications at UCSD, and the University of Ferrara, in November

2003 he joined the faculty of the Information Engineering Department of the University of

Padova, where he is a professor. His present research interests include performance evaluation

in mobile communications systems, random access in mobile radio networks, ad hoc and sensor

networks, energy constrained communications protocols, and underwater communications and

networking. He was Editor-in-Chief of IEEE Wireless Communications from 2003 to 2005,

Editor-in-Chief of IEEE Transactions on Communications from 2008 to 2011, and Guest Editor

for several Special Issues in IEEE Personal Communications, IEEE Wireless Communications,

IEEE Network, and IEEE JSAC. He served as a Member-at-Large of the Board of Governors of

the IEEE Communications Society from 2009 to 2011, and is currently its Director of Education.



FIGURES 26

WOA

(SSP)

GEBCO

(Bathymetry)

Deck41

(Sediments)

W O S S

profileAttenuation

Interference

NS−MIRACLE

ns2

Ray arrival

Channel

simulator

(Bellhop)
Scenario Environmental

data

Figure 1. Schematic representation of the data flow between ns2/NS-MIRACLE, WOSS, the oceanographic databases and

Bellhop: the network simulator provides scenario information (e.g., the geographical position of the nodes, the season of the

year, etc.) to WOSS, which employs it to query oceanographic databases for environmental data. Such data is passed to the

channel simulator (in this case, Bellhop), which returns a simulated channel response to WOSS. After some post-processing,

WOSS provides information on channel attenuation, self-interference and multiple-access interference to the network simulator.



FIGURES 27

Figure 2. Example of attenuation computed by Bellhop. In this particular case, WOSS replicated Bellhop’s “incoherent” option,

which derives the attenuation from the sum of the powers of all complex arrivals. The simulation environment reproduces summer

conditions in north Tyrrhenian waters, west of Italy. The frequency of the transmitted signal is 25 kHz. (Best viewed in color.)



FIGURES 28

1500 1520 1540

0

10

20

30

40

50

60

70

80

90

Speed [m/s]

D
e
p
th

 [
m

]

 

 

1500 1520 1540

0

10

20

30

40

50

60

70

80

90

Speed [m/s]

D
e
p
th

 [
m

]

 

 

1500 1520 1540

0

10

20

30

40

50

60

70

80

90

Speed [m/s]

D
e
p
th

 [
m

]

 

 

08:0000:00 16:00
Time
of day

Figure 3. Example of SSP evolution over time in WOSS. In this case, the user set three different SSPs, each to be applied

for a total simulated period of 8 hours. At the end of the last period, WOSS automatically wraps around and re-applies the first

SSP, i.e., the same set of SSPs is repeated for each simulated day.



FIGURES 29

Figure 4. Typical topology of a complete network deployment during the CommsNet13 campaign carried out in La Spezia,

Italy, in September 2013. The yellow pins denote the operational area. Nodes M1–M4 are bottom mounted nodes forming the

so-called Littoral Ocean Observatory Network (LOON). The gateway buoy is a moored node mounting an acoustic modem and

accessible via a radio interface. The wave glider is an autonomous system which harvests wave energy for propulsion. Folagas

are GraalTech’s low-cost, torpedo-shaped AUVs. Mantas are University of Porto’s portable acoustic/radio gateway nodes. The

ship node is in fact also a Manta, connected to an underwater modem hanging off the RV Alliance. (Best viewed in color.)



FIGURES 30

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Packet generation rate per node [pkt/min]

T
h
ro

u
g
h
p
u
t 
p
e
r 

n
o
d
e
 [
p
k
t/
m

in
]

(a)

0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

Packet generation rate per node [pkt/min]

A
v
e

ra
g

e
 d

e
liv

e
ry

 d
e

la
y
 [

s
]

(b)

Figure 5. Throughput (a) and packet delivery delay (b) for a set of experiments involving the Uw-Polling protocol [21]. Each

value of the packet generation rate corresponds to a different experimental run. The experiments involved the LOON nodes

M1–M4 as packet generators, and the gateway buoy as the sink (see Fig. 4).


