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ABSTRACT
Increasingly effective underwater networks will be required
to meet the growing demand for undersea data. The im-
pending exploitation of non-acoustic underwater communi-
cation modes and the proliferation of autonomous underwa-
ter vehicles (AUVs) will enable the development of under-
water networks able to use multiple modes of wireless com-
munications and AUVs to transport data. In this paradigm,
planning the routes for AUVs to collect data from underwa-
ter sensors becomes critical due to the dynamic nature of the
undersea environment and the data collection process. This
work proposes a dynamic path planning framework that en-
ables judicious decisions on which network nodes the AUVs
should visit next, based on the most recent network-status
information. Routing decisions are aware of the AUVs own
data-storage and energy constraints. Motivated by the in-
tractability of optimal AUV routing, we propose a rollout al-
gorithm as an enabler for dynamic AUV routing. Numerical
tests illustrate the performance of the proposed algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Dynamic programming

1. INTRODUCTION
The advent of enhanced sensing and battery technologies

has led to the development of underwater systems with ex-
tended operational lifetimes that are able to collect unprece-
dented volumes of data. Prompt access to these data is nec-
essary for developing improved monitoring and surveillance
systems tailored to commercial, scientific and military ap-
plications [8]. Current methods for retrieving data from un-
derwater nodes include using acoustic communications with
a surface ship, tethering the underwater node to a buoy that
can employ radio communications, and physical recovery of
the nodes [2]. These methods suffer from various short-
comings since data throughput and energy usage are critical
considerations for these battery-powered systems. Acoustic
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communications are bandwidth-limited, and together with
radio communications can have a high energy-per-bit cost.
Retrieving data by physical recovery of the nodes is maxi-
mally efficient in terms of battery usage but can have a high
financial cost and fail to provide timely access to data [11].

Improved autonomous underwater vehicle (AUV) tech-
nologies have motivated a data-retrieval paradigm in which
low-latency, high-bandwidth underwater wireless commu-
nication technologies, such as optical communications, are
coupled with controlled node mobility. The energy-per-bit
cost associated with optical communications is orders of
magnitude lower than that of acoustic communications [13,
7]. Thus, optical communications can reduce the overall
energy requirements related to underwater data retrieval.
In this paradigm, AUVs approach underwater nodes to re-
trieve their data using optical communications. AUVs can
visit multiple data-collecting nodes before returning to a de-
pot. Depots are special nodes from which data can be ex-
filtrated over a high-bandwidth data link and where AUVs
can recharge their battery. Acoustic communications will
continue to play a significant role in this paradigm as en-
ablers of low-bandwidth, long-range multihop connectivity.
While not necessarily viable for moving large amounts of
data underwater, acoustic links are ideal for the transmis-
sion of control data. Thus, a connected acoustic backbone
can be a critical enabler for higher-bandwidth underwater
communications.

A fundamental problem that arises in this paradigm is
that of planning the paths to be followed by each AUV
for collecting data while satisfying their own data-storage
and energy constraints. Path planning for multiple vehi-
cles with capacity constraints has a long history in the area
of operational research [12]. In the context of underwa-
ter data retrieval, Vasilescu et al. developed an architec-
ture using an AUV that followed a predefined data collec-
tion route and used optical communications to collect data
[13]. Route planning and acoustic communication protocols
for an AUV collecting data acoustically from underwater
nodes were considered by Hollinger et al. [9]. Their work
used packet loss due to the acoustic channel as a metric for
choosing the locations from where the AUV should collect
data. The value of information was used by Basagni et al.
to develop a greedy approach for routing a data collecting
AUV [3]. An acoustic backbone network was used to send
a request for data collection to the AUV, which then de-
cided on which node to collect data from. Although the
resulting greedy algorithm is dynamic in nature, it cannot
guarantee that all nodes in the network are visited within



the desired period of operation. Node cooperation whereby
neighboring nodes move data to judiciously chosen nodes
acting as throw-boxes was proposed by Lucani et al. [10].
In this collaborative paradigm, an AUV only collects data
from throw-boxes and, thus, has fewer and more productive
data collection visits while being able to reduce its route
length. Other works have considered different AUV-aided
data retrieval strategies via acoustic communications where
AUVs communicate with more than one underwater node at
a time, see [6] and references therein. Traits common to most
of these works are: (i) only one AUV following a predefined
path is employed for data collection; (ii) the energy con-
sumption, battery recharge rates, and data-storage capacity
of the AUVs and network nodes are not considered in the
analysis; (iii) the per-node data amount to be collected is
fixed and known; and, (iv) there exists a backbone network
that allows nodes to move their data and relay messages to
the AUVs at an affordable energy-per-bit cost. Although
using fixed routes for AUVs leads to reduced control-data
communication requirements for the overall network, they
may lead to poor AUV performance due to their inability
to adapt to the dynamic undersea environment and data
collection process [11].

The main contribution of this paper is to develop a dy-
namic planning algorithm for routing multiple AUVs to re-
trieve data from underwater nodes that are continuously col-
lecting data. Our model captures the limited energy capac-
ity of the AUV’s battery, the AUV-battery recharge time,
and the data-storage capacity limits of the AUVs and the
network nodes. We refrain from defining fixed routes for
the AUVs. Instead, AUVs are routed dynamically thereby
allowing them to adapt to the current system conditions,
including the volume of data waiting to be collected at the
nodes, the amount of energy remaining in the AUVs, and
the AUV-battery recharge times. Dynamically updating
AUV routes in accordance with the AUV’s battery levels
is paramount to avoid costly route failures that may leave
an AUV adrift. Moreover, the resulting algorithm can ac-
commodate unexpected failures and changes in the network
without recalculation of AUV routes. Our framework pre-
sumes that the underwater nodes form a connected acoustic
network through which network control data can be col-
lected at a fusion center (FC), where routing decisions are
made. In sparse node deployments the sporadic frequency
with which AUVs visit nodes and depots, and the long AUV
travel times between nodes allow enough time to the FC for
collecting all control data required, making a routing deci-
sion and delivering that decision back to the AUVs. Note
that our framework can also be used to outline performance
baselines for future decentralized dynamic AUV routing.

The dynamics of the AUV routing problem are modeled
as a Markov Decision Process (MDP) [4]. Our goal is to
find an optimal routing policy that maximizes the aggregate
reward given to the AUVs as they retrieve data from the un-
derwater nodes over a possibly infinite mission duration. It
is known that even for single-vehicle routing problems, find-
ing an optimal routing policy is computationally intractable
[12]. Thus, we propose to approximate the optimal pol-
icy using a one-step lookahead with rollout algorithm [4].
Our framework incorporates a prediction component that
enables us to deterministically represent future states and
actions over a finite time horizon.

The rest of the paper is organized as follows. In Section

2 we present modeling preliminaries. In Section 3 the data
collection problem is cast in a sequential decision-making
framework defined by an MDP. In Section 4 the rollout-
based AUV routing algorithm is presented. In Section 5
the performance of the proposed algorithm is illustrated via
simulations. The paper concludes in Section 6.

2. MODELING PRELIMINARIES
Consider an underwater data-collection system compris-

ing the sets VN := {v1, . . . , vN} withN data-collecting nodes
and VD := {vN+1, . . . , vN+D} with D depots, and U AUVs
indexed by U := {1, . . . , U}. Nodes in VN collect data until
their respective data-storage capacity {Φn}Nn=1 is exhausted.
Any new datum arriving to a node without available data-
storage space is immediately discarded. Depots are special
nodes with access to high-bandwidth data links and bat-
tery recharging capabilities for the AUVs. Each depot has
Ǔ ≤ U docking stations that AUVs can use to recharge their
batteries and download their data payload. It is assumed
that depots do not collect data, are always able to satisfy
AUV energy demands, and are connected to an FC where
AUV routing decisions are made. All nodes are endowed
with acoustic and optical communications capabilities. The
graph G(V, E) models the underlying acoustic network, with
vertices V := VN ∪VD and edges E defined by all node-pairs
that can communicate acoustically. It is assumed that G is
connected, i.e., for any v, v′ ∈ V there exists a path in G
(comprising acoustic links only) that connects v and v′.

The flotilla of AUVs collects data from the nodes via op-
tical communication and delivers them to any one of several
depots to be exfiltrated. AUVs have limited operational
lifetimes dictated by their battery capacities {Bu}Uu=1, and
finite data-storage capacities {Qu}Uu=1. When an AUV vis-
its a depot, the AUV downloads all its data payload and
recharges its battery to full capacity. The charging rates for
the AUV’s batteries are {cu}Uu=1. If an AUV arrives at a
depot whose docking stations are busy, then it has to wait
until a docking station becomes available. For simplicity, it
is assumed that the main energy cost associated with the op-
eration of the AUVs is due to propulsion, which is modeled
to be proportional to the distance travelled. The distance
between any v, v′ ∈ V is denoted wv,v′ ≥ 0. Energy con-
sumption and transmission delays associated with collecting
data from the nodes and delivering data to the depots via
optical communication links are assumed negligible.

The goal of the FC is to dynamically decide where to route
AUVs so that the amount of data they collect is maximized
and the amount of data lost at the nodes due to data-storage
overflows is minimized. Routing decisions should be mindful
of the AUVs’ data-storage and energy constraints, so that
the AUVs’ storage capacity is not exceeded and their battery
is not depleted. In the following section, the AUV routing
problem is cast within a dynamic programming framework.

3. DYNAMIC AUV ROUTING
In this section, we model the data-collection system as

an MDP and describe how an optimal routing policy can
be obtained. An MDP is comprised by a tuple (S,A,P, R)
where S denotes the set of states, A the set of actions, P
a set of transition probabilities, Pr(S′|S,a), each represent-
ing the probability of transitioning from S ∈ S to S′ ∈ S
after taking action a ∈ A, and R : S × A → R a one-step



reward function obtained when transitioning from S to S′

after using a. MDPs satisfy the Markov property, thus the
next state and reward of the MDP can be predicted based
on the current state S and action a alone.

Next, we describe the components of the MDP character-
izing our data-collection system under the assumption that
state transitions are deterministic. Let the discrete-time in-
dex k ∈ N define decision-making epochs at which AUVs
are to be routed, and R+ the set of non-negative real num-

bers. At the k-th decision-making epoch, x
(k)
u ∈ V repre-

sents the destination of the u-th AUV; τ
(k)
u ∈ R+ the u-th

AUV’s time of arrival at its intended destination x
(k)
u , or

the time at which the AUV will finish recharging its bat-

tery if x
(k)
u ∈ VD; q

(k)
u ∈ [0, Qu] the amount of data in the

u-th AUV’s storage buffer upon arrival at its destination;

b
(k)
u ∈ [0, Bu] the battery remaining at the u-th AUV after

arriving at its destination; φ
(k)
n ∈ [0,Φn] the amount of data

waiting to be collected at the n-th node at the beginning of

the next decision epoch; δ
(k)
n ∈ R+ the last time that node

n was visited by an AUV; and, t
(k)
d,ǔ ∈ R+ the remaining

waiting time at the ǔ-th docking station of vd ∈ VD. The
state of the data-collection system is defined by the tuple

S(k) := (x(k), τ (k),q(k),b(k),φ(k), δ(k),T(k)) ∈ S (1)

where x(k) := [x
(k)
1 , . . . , x

(k)
U ]′ ∈ VU , τ (k) := [τ

(k)
1 , . . . , τ

(k)
U ]′ ∈

RU+, q(k) := [q
(k)
1 , . . . , q

(k)
U ]′ ∈ [0, Q1]× . . .× [0, QU ], b(k) :=

[b
(k)
1 , . . . , b

(k)
U ]′ ∈ [0, B1]×. . .×[0, BU ], φ(k) := [φ

(k)
1 , . . . , φ

(k)
N ]′ ∈

[0,Φ1]× . . .× [0,ΦN ], δ(k) := [δ
(k)
1 , . . . , δ

(k)
N ]′ ∈ RN+ , T(k) :=

[t
(k)
1 , . . . , t

(k)
D ] ∈ RǓ×D+ with t

(k)
d := [t

(k)
1,d, . . . , t

(k)

Ǔ,d
]′ ∈ RǓ+

d = 1, . . . , D, and (·)′ denotes transposition.

At k, the routing decision a(k) is made using information
from S(k) only. The set of AUVs ready to be routed, de-
noted as U (k) ⊆ U , comprises all AUVs that have arrived
to their destination vn ∈ VN , and those that have finished
recharging their batteries at a depot. The k-th decision-

making epoch occurs at time τ (k) := minu∈U τ
(k)
u . Since

τ
(k)
u defines the time at which the u-th AUV is ready to be

routed, U (k) = {u ∈ U : τ (k) = τ
(k)
u }. Our definition of

U (k) tacitly assumes that the times required to upload and
download data from nodes and depots are negligible and,
thus, an AUV is ready to depart as soon as it arrives to a
node. In contrast, battery charging times are not negligible
and are explicitly considered.

The decision vector a(k)(S(k)) := [a
(k)
1 (S(k)), . . . , a

(k)
U (S(k))]′ ∈

A(S(k)) comprises the per-AUV routing decisions a
(k)
u (S(k)) ∈

V made at k. The action space A(S(k)) ⊆ VU defines the

feasible AUV routing decisions as a function of S(k) as

A(S(k)) =
{

a ∈ VU : au = x(k)
u ∀u ∈ Ū (k), (2a)

au = arg min
vd∈VD

(
ζuwx(k)

u ,vd
+ min

ǔ
t
(k)
d,ǔ

)
∀u ∈ D(k), (2b)

au = x(k)
u ∀

{
u ∈ U (k) : x(k)

u ∈ VD, b(k)
u < Bu

}
, (2c)

au 6= au′ ∀{u, u′ ∈ U : u 6= u′, au, au′ 6∈ VD}, (2d)

au 6∈ VD ∀{u ∈ U : x(k)
u ∈ VD, b(k)

u = Bu}, (2e)

au 6= x(k)
u ∀u ∈ U (k), x(k)

u 6∈ VD, (2f)

b(k)
u − γuw̌x(k)

u ,au
≥ 0 ∀u ∈ U

}
(2g)

where ζu > 0 is the inverse of the velocity of the u-th AUV,
Ū (k) := U\U (k) with \ denoting set difference, w̌v,v′ :=
wv,v′ + min

vd∈VD
wv′,vd the length of the shortest path from

v to v′ and from v′ to its closest depot,

D(k):=

{
u ∈ U (k) : (b(k)

u − min
vn∈Ṽu

N

γuw̌x(k)
u ,vn

<0) ∨ (q(k)
u = Qu)

}
(3)

with ṼuN := VN\{x(k)
u , x

(k)

u′ ∈ VN : u′ ∈ Ū (k)}, and γu > 0 is
a scaling factor that maps distance traversed to energy con-
sumption per AUV. Condition (2a) guarantees that AUVs
that have not reached their destination are not rerouted and
that those AUVs at a depot that have not fully recharged re-
main at that depot; (2b) that AUVs that do not have enough
energy to visit any v ∈ VN and then return to a depot, and
those whose data-storage buffer is full are routed directly
to a depot; (2c) that an AUV that just arrived at a depot
remains at that depot until its battery is replenished; (2d)
that no more than one AUV is assigned to any v ∈ VN (only
depots can host multiple AUVs); (2e) that a fully recharged
AUV at a depot is routed to collect data; (2f) that AUVs
ready to be routed are not routed to the same node where
they currently are except for those at the depot that need
to recharge; and, (2g) that all AUVs have enough energy to
reach a depot after they arrive to their new destination as
defined by a(k). Note that (2b) assigns AUVs to the depot
offering the lowest travel plus wait-to-recharge time.

It is assumed that the system transitions deterministically
from S(k) to S(k+1) once a(k) is chosen. Hence, for a given
k , the corresponding entries of P are Pr(S′|S = S(k),a =

a(k)) = 1 if S′ = S(k+1) and Pr(S′|S = S(k),a = a(k)) = 0,
otherwise. This model is relevant for a situation where the
data collection rates at the nodes are fixed and known. The
next section introduces our proposal for the reward R.

3.1 The reward function
By choosing a(k), the system earns a reward R(S(k),a(k)).

Our choice for R rewards the system for the amount of data
collected by the AUVs, and penalizes it for the amount of
data lost to overflows at the nodes and for violations to the
desired revisit period T > 0. The reward R(S(k),a(k)) is
defined as

R(S(k),a(k)) =
∑

(u,n)∈H(k)
1

[
(q(k+1)
u − q(k)

u )− λβ(k),u
n

]
(4)

− λ
∑

n∈H(k)
2

β(k)
n − θ

|H(k)
3 |(τ

(k+1) − τ (k)) +
∑

n∈H(k)
4

ϕ(k+1)
n


where λ > 0 scales data loses due to overflows, θ > 0 scales

violations to T , ϕ
(k+1)
n := max{0, τ (k+1) − δ(k+1)

n − T} de-

notes the length of the violation, H(k)
1 := {(u, n) : u ∈

U (k), a
(k)
u = vn ∈ VN} the set of node-AUV pairs for AUVs

currently at nodes, H(k)
2 := {n : vn ∈ VN}\{a(k)

u : u ∈ U}
the set of nodes not visited by AUVs, H(k)

3 := {n : δ
(k+1)
n +

T < τ (k), vn ∈ VN}, H(k)
4 := {n : τ (k) ≤ δ

(k+1)
n + T ≤

τ (k+1), vn ∈ VN}, β(k),u
n := max[φ

(k)
n + z

(k),u
n − Φn, 0] the

data lost at vn ∈ VN between τ (k) and τ
(k+1)
u , β

(k)
n :=

max[φ
(k)
n + z

(k)
n − Φn, 0] the data lost at vn ∈ VN between

τ (k) and τ (k+1), and z
(k)
n (z

(k),u
n ) the amount of data col-



lected between τ (k) and τ (k+1) (τ
(k+1)
u ) at vn ∈ VN if the

storage capacity of vn were unlimited.
In (4), the amount of data collected (lost) by AUVs (at

nodes) visiting (visited by) nodes (AUVs) is aggregated be-

tween τ (k) and the arrival times of the corresponding AUVs.
Data lost at all other nodes and revisit violations are aggre-
gated between τ (k) and τ (k+1). The next sections describe
the dynamics of the system and an optimal AUV routing
approach based on dynamic programming.

3.2 Characterization of the system evolution
The dynamics of the data-collection system describe how

S(k) evolves as decisions are made and new information ar-
rives. Given (S(k),a(k)), the components of S(k+1) are de-

fined as follows. Vehicle destinations are set to x
(k+1)
u = a

(k)
u .

Let the auxiliary vector υ(k) = 0U , where 0U is a U × 1
vector of zeros. Per depot, we define a queue management
policy that assigns AUVs to docking-station queues accord-

ing to their waiting times. Let U (k)
d := {u ∈ U (k) : a

(k)
u =

vd ∈ VD}, with |U (k)
d | =: L

(k)
d ≤ U , comprise the indices of

AUVs assigned to vd ∈ VD, and {b(k)
u` : u` ∈ U (k)

d }
L

(k)
d

`=1 the

remaining battery of the AUVs in U (k)
d . AUVs are assigned

to queues via a sequential procedure as follows. First, we

construct the order statistics b
(k)

(u1) ≤ . . . ≤ b
(k)

(u
L
(k)
d

), and

define auxiliary docking station waiting-time variables as

t
(k,1)
ǔ,d := t

(k)
ǔ,d ∀ǔ. During the `-th iteration, the AUV cor-

responding to b
(k)

(u`), denoted by i
(k)
` ∈ U (k)

d , is assigned to

ǔ
(k,`)
d := arg minǔ t

(k,`)
ǔ,d . Then, the i

(k)
` entry of υ(k) is set

to [υ(k)]
i
(k)
`

= t
(k,`)

ǔ
(k,`)
d

,d
and the auxiliary waiting times t

(k,`)
ǔ,d

are updated as

t
(k,`+1)
ǔ,d =

t
(k,`)
ǔ,d + (B

i
(k)
`

− b(k)

i
(k)
`

)/c
i
(k)
`

ǔ = ǔ
(k,`)
d

t
(k,`)
ǔ,d ǔ 6= ǔ

(k,`)
d

. (5)

This procedure is repeated for ` = 1, . . . , L
(k)
d until all el-

ements of U (k)
d are assigned to a docking station. Finally,

at ` = L
(k)
d , the entries of t

(k)
d are partially updated to

t
(k)
ǔ,d := t

(k,L
(k)
d

)

ǔ,d . Now υ(k) contains waiting times for all u ∈
U (k)
d at their assigned docking station. Note that [υ(k)]u = 0

∀u 6∈ U (k)
d . AUV arrival times are updated to

τ
(k+1)
u =


τ (k)
u u ∈ Ū (k)

τ (k)
u + ζuwx(k)

u ,a
(k)
u

u ∈ B(k)
1

τ (k)
u + [υ(k)]u + (Bu − b(k)

u )/cu u ∈ B(k)
2

(6a)

(6b)

(6c)

where B(k)
1 := {u ∈ U (k) : (x

(k)
u ∈ VN ) ∨ (x

(k)
u ∈ VD, b(k)

u =

Bu)}, and B(k)
2 := {u ∈ U (k) : x

(k)
u ∈ VD, b(k)

u < Bu}.
Row (6a) corresponds to arrival times for AUVs that re-
mained in route, (6b) to those that were rerouted to some
v ∈ VN or those that are at a depot being routed elsewhere,
and (6c) to those that just arrived to a depot and need to

recharge their batteries. Then, each entry of T(k) is updated

as t
(k+1)
ǔ,d = max

[
t
(k)
ǔ,d − (τ (k+1) − τ (k)), 0

]
to account for the

time elapsed between decision epochs.

The amount of data stored at each AUV is updated to

q
(k+1)
u =


q(k)
u u ∈ Ū (k)

0 u ∈ U (k), a(k)
u ∈ VD

min
[
q(k)
u + φ̃

(k),u

a
(k)
u

, Qu
]
u ∈ U (k), a(k)

u ∈ VN

(7a)

(7b)

(7c)

where φ̃
(k),u
n := min[φ

(k)
n +z

(k),u
n ,Φn] denotes the data stored

in vn ∈ VN at τ
(k+1)
u . Row (7a) corresponds to AUVs that

remained in route, (7b) to those that were routed to a depot,
and (7c) to those that were routed to collected data.

The battery remaining at each AUV is updated to

b
(k+1)
u =


b(k)
u u ∈ Ū (k)

max
[
b(k)
u − γuwx(k)

u ,a
(k)
u
, 0
]

u ∈ B(k)
1

Bu u ∈ B(k)
2

(8a)

(8b)

(8c)

where (8a) corresponds to the battery of the AUVs that
remained in route, (8b) to the battery of AUVs not located
at the depot or to AUVs at the depot that have recharged
their batteries, and (8c) to AUVs at the depot that have not
recharged their batteries.

The amount of data stored at each node is updated to

φ(k+1)
n = max

0, φ̃(k)
n −

∑
u∈Ũ(k)

n

(Qu − q(k)
u )

 (9)

where Ũ (k)
n := {u ∈ U (k+1) : a

(k)
u = vn ∈ VN}, φ̃(k)

n :=

min[φ
(k)
n + z

(k)
n ,Φn] denotes the amount of data collected

by vn ∈ VN up to τ (k+1), and the sum accounts for data
retrieved by an AUV from vn ∈ VN at τ (k+1). Note that

Ũ (k)
n has at most one element due to (2d).
Finally, the last time that a node was visited by an AUV

is updated to

δ
(k+1)
n =

{
τ (k) n ∈ H(k)

5

δ(k)
n n 6∈ H(k)

5

(10a)

(10b)

where H(k)
5 := {n : a

(k)
u = vn ∈ VN for some u ∈ U (k)}.

Row (10a) corresponds to nodes visited by an AUV at τ (k),

and (10b) to those nodes not visited at τ (k).

3.3 Routing based on dynamic programming
Let Π denote the space of feasible AUV routing policies.

A policy is a sequence of decision rules π := (µ
(0)
π , µ

(1)
π , . . .),

where each decision rule µ
(k)
π : S → A(S(k)) specifies how to

route the AUVs when in S(k), i.e., a(k)(S(k)) = µ
(k)
π (S(k)).

Our goal is to obtain the best policy π∗ dynamically, i.e.,
as the system evolves and new information is revealed, such

that π∗ = arg maxπ∈Π

∑∞
k=0 γ

kR(S(k), µ
(k)
π (S(k))) where γ ∈

(0, 1) is a discount factor and R the one-step reward.
Dynamic programming provides an algorithmic framework

that lends itself naturally to finding π∗ [4]. Bellman’s princi-

ple of optimality states that if the optimal policy {µ(i)
π∗}i≥k+1

for {S(i)}i≥k+1 were known, then at S(k) one would chose

a(k) as

a(k)= arg max
a∈A(S(k))

[
R(S(k),a) + γVk+1(S(k+1)(S(k),a))

]
(11)
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Figure 1: Schematic of one-step lookahead with rollout al-
gorithm at S(k) for |A(S(k))| = 4.

where the notation S(k+1)(S(k),a) emphasizes the depen-

dence of S(k+1) on the pair (S(k),a), and

Vk(S(k)) :=

∞∑
k′=k

γk
′−kR(S(k′), µ

(k′)
π∗ (S(k′))) (12)

denotes the optimal cost-to-go. Unfortunately, using (11) to
solve the AUV routing problem turns out to be computa-
tionally intractable even if the operational horizon were fi-
nite [4]. The following section develops a tractable approach

to approximate the policy π∗ that yields a(k).

4. AUV ROUTING VIA ROLLOUT
This section develops a one-step lookahead with rollout

algorithm for approximating π∗. Lookahead policies rely on
explicit representations of future states and actions of the
system over a finite horizon. Rollout algorithms rely on a
suboptimal policy, known as base-policy that can be used
to route AUVs. At the end of the lookahead horizon, the
rollout component uses the base-policy to approximate the
optimal cost-to-go V from that state onward.

When in S(k), the one-step lookahead with rollout algo-
rithm yields an AUV routing decision

â(k)= arg max
a∈A(S(k))

[
R(S(k),a) + γṼk+1(S(k+1)(S(k),a))

]
(13)

where Ṽk+1(S(k+1)(S(k),a)) is an approximation of the cost-

to-go function Vk+1 in (11), and â(k) is the AUV routing

decision made in lieu of the optimal µ
(k)
π∗ . The one-step

lookahead approach constructs a rooted tree T (k) with unit
tree-depth, root node S(k), and |A(S(k))| end-nodes. Each

end-node corresponds to a possible new state S
(k+1)
i and has

an associated reward R(S
(k)
i , ā

(k)
i ), where ā

(k)
i denotes the

action taken to evolve from S(k) to S
(k+1)
i . In general, a

rollout algorithm with an l-step lookahead policy constructs
an l-level tree rooted at S(k) summarizing all possible states
and actions that follow from S(k). Unfortunately, the or-
der of the tree that must be explored to find â(k) grows as
O((N +D)l), thus we constrain ourselves to the case l = 1.

For each end-node of T (k), we construct an approxima-
tion for the cost-to-go Ṽk+1 by using a base policy π̄ :=

Algorithm 1 Dynamic AUV routing

Require: Select H, γ, λ, θ > 0 and

S(0) = (0U ,0U ,0U , [B1, . . . , BU ]′,0N ,0N ,0Ǔ0′D).

1: for k = 0, 1, 2, . . . do
2: Acquire network-wide control-data to construct S(k).
3: Construct one-step lookahead tree T (k) rooted at S(k).

4: for each end-node S
(k+1)
i of T (k) do

5: Generate {(S(k+h)
i , ā

(k+h)
i )}Hh=1 via (15).

6: Compute Ṽk+1(S
(k+1)
i ) via (14).

7: end for
8: Compute â(k) via (13).
9: Disseminate routing decision to appropriate AUVs.

10: Deterministic evolution to S(k+1) due to â(k).
11: end for

{µ̄(k+h)
π̄ }Hh=1 to simulate the evolution of the system over

H decision epochs. Following π̄ yields a sequence of H

state-action pairs {(S(k+h)
i , ā

(k+h)
i )}Hh=1, where ā

(k+h)
i :=

µ̄
(k+h)
π̄ (S(k+h)). Then, Ṽk+1(S

(k+1)
i ) is approximated as

Ṽk+1(S
(k+1)
i ) =

H∑
h=1

γh−1R(S
(k+h)
i , ā

(k+h)
i ). (14)

This procedure is illustrated in Fig. 1.
A greedy algorithm with respect to a one-step reward

function RG : S × A(S(k)) → R is used to define the base
policy π̄. Note that it is not necessary to set RG equal to

R. Given S
(k+h)
i , the routing decision for the AUVs based

on π̄ is

a
(k+h)
i := arg max

a∈A(S
(k+h)
i )

RG(S
(k+h)
i ,a). (15)

The resulting AUV routing algorithm is summarized as Al-
gorithm 1. Its computational complexity grows linearly with

the order of T (k) which is upper bounded by (N +D)|U
(k)|.

Note that in practical scenarios it is unlikely that |U (k)| >
1, except for the case when multiple AUVs must be con-
currently routed from, e.g., a depot. Often, |A(S(k))| <
N+D due to the data-storage and energy constraints of the
AUVs, especially as AUVs are closer to depleting their bat-
teries. Solving (13) and (15) is done by first evaluating their
corresponding costs for all feasible actions, as dictated by

|A(S(k))| and |A(S
(k+h)
i )|, respectively, and then choosing

the actions that yield the largest reward. The computational
complexity of these enumeration procedures grows linearly
with the cardinality of the corresponding action space A.

4.1 Practical implementation challenges
Algorithm 1 has an acquisition and a dissemination stage

(lines 2 and 9, respectively) where network state informa-
tion is sent from the nodes and AUVs towards the FC and
routing decisions are sent back from the FC to the AUVs,
respectively. The acquisition stage is added to cope with
the uncertainty associated with the state transitions that
would occur in a real environment. The true state S̆(k) may
differ from S(k). Thus, making routing decisions based on
S(k) can degrade the performance of the data-collection sys-
tem. Instead, one can collect relevant state variables from
the network at the beginning of the decision epoch and use
them to construct an updated view of the system state.
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Figure 2: Node and depot deployment. Triangles (circles)
represent data-collecting nodes (depots). Dashed lines show
fixed AUV routes obtained with CW. Each route can be
completed by an AUV with a single battery charge.

A decision epoch, k, is triggered when any of the AUVs
arrive at a data-collecting node, or are at a depot ready
to be routed. AUVs use the backbone acoustic network
defined by G to send the tuple (x̆

(k)
u , τ̆

(k)
u , q̆

(k)
u , b̆

(k)
u ) of up-

dated AUV state information to the FC, and a broadcast
message alerting all v ∈ VN that a decision epoch was trig-
gered and requesting their state information. All nodes will

send their updated state variables {(φ̆(k)
n )}Nn=1 to the FC as

soon as they receive the broadcast message from the AUVs.
Note that T(k) is immediately available to the FC since
depots were endowed with high-bandwidth communication

links connecting them directly to it, and the true δ̆
(k)

is ob-

tained by setting δ
(k)
n = τ̆

(k)
u , ∀u ∈ U (k). At this point, the

FC can use S̆(k) in lieu of S(k) and make a routing decision
for the AUVs according to Algorithm 1.
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(b) AUV 2.
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(c) AUV 3.
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Figure 3: Illustration of AUV routes yielded by Algorithm 1
for H = 50, γ = 0.7675, λ = 17, and θ = 1, 000. Thickness
of edges connecting node pairs is proportional to the fre-
quency with which the edge was traversed and size of nodes
is proportional to the frequency with which it was visited.
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Figure 4: Frequency of AUV visits to nodes and depots af-
ter 400 decision epochs. Parameter values for Algorithm
1 were p1 := (H1 = 50, γ1 = 0.545, λ1 = 0.575), p2 :=
(H2 = 5, γ2 = 2.0, λ2 = 0.3225), and, θ1 = 1, 000, and θ2 =
100, 000. The greedy algorithm used (γ3 = 0.99, λ1, θ1).

Once a decision is made at the FC, the new destinations
for AUVs in U (k) are sent through G. Note that updated
state variables from AUVs u ∈ Ū (k) were not collected since
those AUVs may not be reachable through G. If communi-
cating with them were possible, updated data-storage and

battery levels, and the φ̆
(k)
n ’s of their corresponding destina-

tions could be used to update their local state variables.
During the acquisition stage, a node, n, can send infor-

mation to the FC to enable better estimates for z
(k+h)
n and

z
(k+h),u
n , h = 0, . . . , H. Per node, historical data can be

used to develop predictors for the amount of data that will
be collected. These predictors will enable AUV routing even
when the data-collection behavior of the nodes is unknown.
This particular feature is not explored further in this work,
rather it is left as a future research direction.

5. NUMERICAL EXPERIMENTS
In this section, the performance of Algorithm 1, imple-

mented in Python 2.7.8, is illustrated via numerical tests. A
data-collection system with N = 25 nodes, D = 3 depots,
and U = 4 AUVs deployed over a 40 km × 40 km area is
considered as a base case. A squared-grid topology is used
to define the locations of the nodes, whose true locations
are chosen uniformly at random within a 2-km radius of the
corresponding grid point as shown in Fig. 2. Each depot
has Ǔ = 2 docking stations for recharging AUVs. AUVs are
assumed to belong to the REMUS 100 family [1]. This fam-
ily of AUVs have a 5.2 kWh battery that, when traveling at
a nominal speed of 1.53 m/s (roughly 3 knots), yields an op-
erational endurance of 22 hours. At this speed the shortest
travel time between the closest pair of nodes is roughly 1.8
hours. Typical recharge rate for these batteries is 8 hours.
In terms of data-storage space, each node has 162 kB of
memory and each AUV has 1.62 MB of memory. Thus, if
nodes collect data at a rate of 10 bits-per-second (bps) it
would take 36 hours for them to overflow.

The one-step reward RG for the base policy was set to

RG(S(k),a(k)) :=
∑

(u,n)∈H(k)
1

[(q
(k+1)
u − q

(k)
u ) − λβ

(k),u
n ] −

λ
∑
n∈H(k)

2

β
(k)
n + θ

∑
n∈H(k)

5

max{0, ϕ(k+1)
n }. Note that the

last term of RG has a positive sign (cf. (4)) and captures



Table 1: Sample performance statistics for Algorithm 1 after 400 decision epochs. Average (Ave.) data statistics correspond to

system-wide averages over τ (400) hours. The median in-between decision epoch time is denoted ∆τ (k). Average and standard
deviation (SD) for the per-decision-epoch execution times for experiments ran on a MacBook Pro with a 2.6 GHz Intel Core
i5 processor and 8 GB of RAM are included. Statistics for greedy AUV routing correspond to the best choice of parameters
found for RG. Boldfaced numbers feature highest and lowest values per column for Algorithm 1.

Parameters Duration (hours) Total data (MB) Ave. data (kB/hour) Exec. time (sec.)

H γ λ θ τ (400) ∆τ (k) Lost Collected Lost Collected Ave. (SD)

5 0.3225 2.000 1,000 298.05 0.62 2.13 34.14 7.15 114.54 0.3565 (0.3026)
5 0.3225 2.000 10,000 253.00 0.40 3.73 26.82 14.76 106.00 0.3778 (0.2856)
5 0.3225 2.000 100,000 185.45 0.31 6.20 15.96 33.46 86.04 0.4048 (0.2830)
5 0.7675 2.000 1,000 317.71 0.60 2.64 36.08 8.32 113.57 0.3001 (0.2893)
5 0.7675 2.000 10,000 280.41 0.47 4.13 30.30 14.73 108.06 0.3309 (0.2823)
5 0.7675 2.000 100,000 282.39 0.52 3.83 30.68 13.55 108.63 0.3131 (0.2708)

10 0.3225 1.050 1,000 308.64 0.62 2.76 35.10 8.94 113.74 0.6087 (0.5385)
10 0.3225 1.050 10,000 215.32 0.37 3.68 21.75 17.08 101.03 0.6935 (0.5019)
10 0.3225 1.050 100,000 192.93 0.31 5.52 16.97 28.01 87.96 0.6724 (0.5150)
10 0.5450 0.575 1,000 315.00 0.55 2.45 35.77 7.76 113.57 0.5722 (0.5331)
10 0.5450 0.575 10,000 296.28 0.46 3.94 31.77 13.30 107.21 0.6108 (0.5492)
10 0.5450 0.575 100,000 285.30 0.48 4.14 30.44 14.53 106.69 0.5826 (0.5322)
10 0.9900 6.000 1,000 311.70 0.49 2.15 36.20 6.90 116.13 0.5432 (0.5345)
50 0.5450 0.575 1,000 311.89 0.52 2.52 35.78 8.09 114.73 2.5617 (1.8525)
50 0.5450 0.575 10,000 283.52 0.51 3.75 30.41 13.21 107.25 2.4552 (1.7681)
50 0.5450 0.575 100,000 261.65 0.40 4.02 27.60 15.35 105.46 2.5381 (1.7483)
50 0.7675 1.525 1,000 327.58 0.56 2.22 37.49 6.78 114.45 2.3190 (1.8005)
50 0.7675 1.525 10,000 329.49 0.59 3.69 36.40 11.21 110.47 2.3834 (1.8334)
50 0.7675 1.525 100,000 320.26 0.57 4.37 34.29 13.65 107.07 2.3212 (1.7903)
50 0.7675 17.000 1,000 306.35 0.52 1.76 35.36 5.74 115.44 2.6194 (1.9480)

Greedy 0.9900 0.575 1,000 404.34 0.69 9.07 40.91 22.42 101.18 0.0039 (0.0028)
CW − − − 196.72 0.43 2.35 21.86 11.97 111.13 –

the entire length of the violation so as to encourage AUVs to
visit nodes with longer revisit violations first. At τ (0) = 0,
all AUVs were launched from depot 26 (see Fig. 2). To re-

duce the computational cost of constructing T (k) for cases
when |U (k)| > 1, our implementation of Algorithm 1 incre-

mentally delays AUVs in U (k) by 0.01 s. Thus, at every
decision epoch AUVs are effectively routed one at a time,
even when multiple AUVs trigger the same decision epoch.
In the following tests, a deterministic scenario encompassing
400 decision epochs was considered. Data generation rates
rn were set to r1 = r2 = 30 bps, r24 = r25 = 3 bps, and
rn = 10 bps for all other vn ∈ VN . The revisit period was
set to T = 36 hours.

Table 1 displays various performance metrics for the data-
collection system in Fig. 2. The values yielded by the
best performers with respect to average data collected for
H = 5, 10, 50 were tabulated. For the range of γ and λ pa-
rameters considered, the best performance was consistently
achieved for θ = 1, 000. As θ increased it was also observed
that the median of the in-between decision epoch durations
decreased. This behavior was more apparent for small val-
ues of H. For comparison, a variation of the Clarke-Wright
(CW) algorithm was employed to find fixed routes for the
AUVs [5], see Fig. 2. The operating region was first di-
vided into three sectors, each containing one of the depots
and having areas in the ratio 1:1:2. The CW algorithm was
then used per sector to find routes between the depot and
the other nodes in that sector. The smaller sectors were as-
signed one AUV each and the larger region was assigned two.
Greedy AUV routing, using RG as defined earlier in this sec-
tion, was also tested. Their performance is summarized at
the bottom of Table 1. Note that the best average data

collection performance of Algorithm 1 was 14.78% (4.50%)
better than that of the greedy (CW) one. Also, the aver-
age data loss of Algorithm 1 for the same case was 69.22%
(42.36%) less than that of the greedy (CW) one. Finally,
note that the average execution time per decision epoch in-
creases with H. However, their values are much smaller than

those of ∆τ (k). Thus, for the deployment in Fig. 2, Algo-
rithm 1 does not preclude a computationally constrained FC
from making decisions in nearly real time.

Fig. 3 illustrates the routes followed by each of the AUVs
as they collect data from the network nodes. For this sce-
nario, H = 50, γ = 0.7675, λ = 17, and θ = 1, 000 were
used since they yielded the a good tradeoff between average
data collected and data lost (cf. Table 1). Note that AUVs
were routed throughout the entire deployment (cf. Fig. 2).
Increasing θ led to decisions with shorter AUV travel times.
In these cases, Algorithm 1 failed to make decisions that led
to more frequent visits to nodes with higher rn so as to avoid
the large cost attached to long node-revisit-period violations
(cf. Fig. 4). For this test, fewer than 10% of the in-between
decision epoch time lengths were 6 minutes or less, and their
median duration was 31.2 minutes.

Fig. 4 shows the frequency with which each node was vis-
ited by an AUV for different configurations of Algorithm 1.
Not surprisingly, v24 and v25 were the least visited ones. The
number of AUV visits to v8, v9, v14 and v17 was consistently
higher than that to other nodes. Their close proximity to
the depots allowed AUVs to visit these nodes when in the
vicinity of a depot. The number of visits to each of these
nodes is correlated to the number of visits to their closest
depot. Also, note that both Algorithm 1 and the greedy
algorithm visited all nodes in every case considered (cf. the
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Figure 5: Aggregate data collected and lost up to τ (400).
Parameter values for Algorithm 1 are as defined in Fig. 4.

greedy approach in [3]).
Fig. 5 illustrates the aggregate amounts of data collected

by AUVs per node and the aggregate amounts of data lost
per node. AUVs collect the most (least) data out of v1 and
v2 (v24 and v25) which correlates with the fact that these
were the nodes with the largest (lowest) rn. Larger values of
θ led to smaller amounts of data collected across all nodes,
with the most noticeable decrease occurring at v1 and v2.
Fig. 6 illustrates average data collected and lost through-
out the network as a function of λ. Since data losses be-
come more costly as λ increases, AUVs tend to travel more
often to nodes located nearby thereby decreasing the in-
between decision epoch lengths, and thus decreasing τ (400).
By varying γ, one can indirectly control the length of the
planning horizon. As shown in Fig. 6, the data collec-
tion system benefits from medium-length planning horizons,
with (H, γ) = (50, 0.7675) and (H, γ) = (10, 0.99) yielding
the best performances. Interestingly, long planning horizons
yielded inferior performance in part due to the approxima-
tion error inherent to Ṽ .
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Figure 6: Average statistics of data collected and lost ob-
tained for a wide range of λ’s with θ = 1, 000.

6. CONCLUSIONS AND FUTURE WORK
This work proposed a dynamic path-planning framework

for AUVs used to retrieve data from underwater nodes. Rout-
ing decisions are based on the most recent network-status
information and cognizant of data-storage and energy con-
straints. Our routing policy was obtained via a one-step
lookahead rollout algorithm.

In future work, we plan to include stochastic models for

AUV travel times and perturbations on the observable state
variables, and develop predictors for data volumes collected
at the nodes. These predictors will reduce the computational
complexity associated with making a judicious AUV routing
decision when facing stochastic state transitions, and when
the backbone acoustic network is not available. Lastly, we
plan to explore the impact of the characteristics of the back-
bone acoustic network on the effectiveness of the dynamic
routing decisions made.
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