
MACA-APT: A MACA-based Adaptive Packet Train

transmission protocol for Underwater Acoustic Networks

Saiful Azad⋆, Paolo Casari‡, Khandekar Tabin Hasan⋆, Michele Zorzi‡
⋆Department of Computer Science, American International University, Bangladesh

‡Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova, Italy

{sazadm684, tabin}@aiub.edu, {casarip, zorzi}@dei.unipd.it

ABSTRACT

In wireless communications, collision is one of the principal sources
of energy wastage, which often makes collision avoidance strate-
gies preferred for medium access control (MAC) protocols. In
this paper, we propose a collision avoidance-based MAC protocol
called MACA-based Adaptive Packet Train (MACA-APT), which
has been designed specifically for underwater acoustic networks
(UANs). The design explicitly accounts for prominent character-
istics of UANs such as long propagation delays and typically high
bit error rates. In particular, the former is compensated via the
transmission of multiple consecutive packets to multiple different
receivers; the latter, instead, is tackled by embedding a cross-layer
Stop-&-Wait ARQ scheme within MACA-APT.

The performance of the proposed protocol is evaluated via sim-
ulations and compared to another MAC protocol, also based on
MACA, showing that MACA-APT achieves better performance for
low to intermediate packet generation rates, and equivalent perfor-
mance at higher rates. Moreover, we assess the impact of the packet
train size on the performance of either protocol. This result is a
first step towards the design of adaptive multi-packet multi-receiver
MAC protocols for underwater networks.

Categories and Subject Descriptors

C.2.0 [Communication/Networking and Information Technol-

ogy]: General—Data communications; I.6.6 [Cooperative Under-
water Communications]: Simulation and Modeling—Simulation

Output Analysis

General Terms

Design, Measurement, Performance

Keywords

Underwater acoustic networks; MAC protocols; collision avoid-
ance; MACA; adaptive packet train length; performance evalua-
tion; simulation.

1. INTRODUCTION
In general, a MAC protocol based on collision avoidance pre-

scribes the transmission of a single packet after every successful

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
WUWNet’14, November 12 - 14 2014, Rome, Italy
Copyright 2014 ACM 978-1-4503-3277-4/14/11 ...$15.00
http://dx.doi.org/10.1145/2671490.2674580.

handshake [1–3]. This choice fits well in terrestrial wireless net-
works, where a handshake is typically completed within a relatively
short time. The case of UANs is different, as typically long propa-
gation delays (relative to a data packet transmission time) and larger
contention area require longer handshake timings. Consequently,
channels undergo lower utilization and the network achieves a lower
throughput performance with respect to handshake-free schemes [4].
To increase the channel utilization, several MAC protocols pre-
scribe the transmission of a packet train to a single neighbor or to
multiple neighbors [5–7] within a single session, defined as the pro-
tocol operations that encompass a successfully completed prelim-
inary handshake (if any is prescribed) and the ensuing data trans-
mission phase. When transmitting packets to multiple receivers,
all neighboring nodes that can do harm to the current transmis-
sion should refrain from accessing the channel. Eventually, non-
participating nodes could be put to sleep in order to preserve energy
until the ongoing session has been completed.

Although a few collision-avoidance protocols in the literature
can transmit multiple consecutive packets to compensate for long
propagation delays and reduce the impact of the overhead due to
handshakes, the throughput-optimal number of packets that should
be exchanged after a successful handshake has been comparatively
less investigated. For example, one such investigation was con-
ducted in [8] for the case of a link between two nodes with Auto-
matic Repeat reQuest (ARQ). A similar study on packet size that
achieves the optimal balance between the MAC protocol overhead
and the chance of collisions was carried out in [9]. In this paper,
we investigate the same issue in the case of a multiple-access net-
work and propose our MACA-APT protocol, which improves the
channel utilization by transmitting multiple consecutive packets af-
ter every successful handshake completion. It is adaptive since it
does not require a fixed window size for packet transmission, but
rather supports a variable window size, as described in Section 3.

Moreover, MACA-APT incorporates error-control functions in
a cross-layer fashion via a S&W ARQ scheme. This function is
utilized to compensate for the typically high bit error rates experi-
enced in underwater acoustic channels [10], and therefore recover
from packet transmission errors. Most of the collision avoidance
protocols [5–7] designed for UANs delegate this function to other
layers of the protocol stack. By concentrating the information re-
quired for both channel access and error control into the same pro-
tocol, significant savings are achieved in terms of overhead, which
makes the MACA-APT more amenable to be used in UANs.

2. RELATED WORK
As noted in Section 1, a traditional MACA-based protocol de-

signed for terrestrial networks is unable to achieve a satisfactory
throughput in UANs, because a single packet transmission is per-
formed after every successfully completed handshake. There are
a few MACA-based protocols already proposed in the literature

for underwater acoustic networks. Among them, those described
in [2, 3] also transmit a single packet after every successful hand-
shake. Due to the long propagation delay and low transmission bit
rates, this approach is not efficient under water, as the contention
period and handshake durations would be very long. In turn, this
would mean exceedingly low channel utilization and low through-
put. In order to increase the channel utilization, a MACA-based
MAC protocol called MACA-MN was proposed in [5]. In MACA-
MN, a node transmits a fixed-length packet train after every suc-
cessful handshake. However, a node may not have a sufficient
number of packets in queue to transmit a complete train, and there
is no rule that allows the release of unused channel access time to
other nodes. Hence, a node may waste valuable communication
resources, which could be allotted to other nodes.

In [6], an extension of the MACA-MN protocol, called Reverse
Opportunistic Packet Appending (ROPA), is proposed. In ROPA,
when a sender completes its packet transmissions after a successful
handshake, it immediately starts receiving packets. This technique
reduces the amount of time spent on control signaling. A slightly
different protocol called BiC-MAC [7] improves the channel uti-
lization by employing bidirectional data packet exchanges among
two communicating nodes after every handshake round.

Most protocols mentioned above assume that packet transmis-
sions fail prominently because of collisions, and in any event del-
egate error control functions to other protocols. This can cause an
increase of the overhead, which could be kept limited by embed-
ding error control into the MAC layer. This is the design choice in
our proposed protocol, as detailed in Section 3.

3. THE MACA-APT PROTOCOL
The following subsections detail our proposed MACA-APT pro-

tocol: Sections 3.1 and 3.2 deal with the handshaking and packet
transmission scheme of MACA-APT, whereas Section 3.3 details
the cross-layer ARQ technique embedded in MACA-APT.

3.1 Handshaking Technique
In general, collision avoidance is achieved by completing a hand-

shake before any data transmissions. While it is true that this rep-
resents an overhead for the network and a possible source of colli-
sions [9,11], it is a cost to be paid in order to organize the commu-
nications in such a way that collisions are less likely to occur. For
handshaking, MACA-based protocols generally employ Request-
To-Send (RTS) and Clear-To-Send (CTS) packets: RTSs are trans-
mitted to understand whether the receiving node (or nodes) are
ready to receive, whereas CTSs inform the sender that the receiver
is ready to receive packets.

Handshaking procedures become slightly more involved when
a sender must contact multiple receivers within a single session.
In particular, the following aspects must be taken into account: i)
whether a sender should transmit a single RTS for all receivers, or
rather multiple RTSs, one for each receiver; ii) how many CTSs
should be received before a handshake is considered complete; iii)
how to handle the case where no CTSs are received.

MACA-APT has been designed to solve the above issues as fol-
lows. When a node is idle and has packets to transmit, it senses
the channel for a random amount of time in order to detect ongoing
sessions. Any packet reception within this sensing period is inter-
preted as an ongoing session, and makes the sensing node enter a
sleep state for the remainder of the session duration. This is made
possible by piggybacking the session duration in every control and
data packet, à la 802.11 [1]. We remark that this would be useful

also to coordinate any nodes that should want to join the network.
After channel sensing, the sender moves to the RTS transmission

state. To prepare the RTS, the node inspects its packet buffer to
discover all receivers to whom it has packets to transmit, and com-
piles a list to be included in the RTS packet. Each packet in the
buffer can be in one of the three following states: NOT_YET_TX,
SELECTED, and WAITING_FOR_ACK. Every packet received from
the upper layer is initially marked as NOT_YET_TX. The number
of packets to be transmitted in the coming session is chosen adap-
tively. Unlike [5–7], a node i computes the size of the packet train
it should transmit via an expression of the form Li = min(Qi,M),
where Li is the number of packets to be transmitted in a train,Qi is
the number of packets in the buffer of node i, M is a user-defined
threshold, which can be substituted by some optimum number of
packets to be sent, L̄, if this value is known given the network
topology and the channel conditions. In the following, we will look
for L̄ via simulation, and therefore play withM in order to under-
stand the impact that this value has on the overall performance of
the network. All packets selected for transmission are marked as
SELECTED. MACA-APT estimates the duration of the upcoming
session as follows:

T = 5τmax + tRTS + Li × tDATA + 2δ (1)

where τmax is the maximum propagation delay in the network, tRTS
and tDATA are the transmission times of an RTS and of a DATA packet,
respectively, Li is the number of DATA packets selected for trans-
mission and δ is a guard time. Note that the maximum propagation
delay τmax is counted 5 times in (1) for the following reason. In
MACA-APT the transmitter senses the channel once before the RTS
packet transmission and once more before the DATA packet trans-
mission, in order to minimize the chance of collisions. The remain-
ing factor 3τmax is a sufficiently long time to accommodate the
transmission and reception of multiple CTSs from multiple nodes.
As anticipated above, the sender includes T in the RTS packet as a
measure of the session duration.

After receiving an RTS, any idle nodes not included in the list of
intended receivers move to the sleep state and start a timer of dura-
tion T . This makes it possible to avoid useless idle listening, which
is a source of energy wastage. Intended receivers, if idle, gener-
ate a response packet called CTS with Report Annex (CRA). The
CRA is an extension of currently available CTS packets in MACA or
MACA-based protocols. By the reception of a CRA packet, the RTS
sender realizes the availability of the receiver. In CRA packets, the
node also includes a report of the packets that have been correctly
received in the previous session that involved these two nodes. This
is the way the sender gets an acknowledgment for correctly deliv-
ered packets: since the process takes place at every new handshake,
the information about correct deliveries is often refreshed. The de-
tails of this S&W ARQ technique are reported in Section 3.3. The
CRA sender also includes the expected session duration, in order to
inform its neighbors and avoid unwanted channel accesses. After
transmitting the CRA, the node waits for DATA packet receptions by
enabling a fixed length timer which is equal to the session duration.
When any neighbor receives the CRA, it notes down the duration of
the upcoming session and moves to the sleep state if it is not among
the intended receivers.

As noted in Section 1, the vulnerability periods affecting a MAC
protocol for UANs are long, due to the significant propagation de-
lays. Therefore, when a node senses a channel before transmitting
an RTS packet, it may still receive an RTS, a CRA or a DATA packet.
In case of CRA and DATA packets, the node reads the session dura-
tion T in the packet header and moves to the sleep state in order

to preserve energy. If the node receives an RTS packet from a dif-
ferent source right after having transmitted its own RTS packet, it
drops the received RTS and keeps waiting for CRA packets. Con-
versely, it reads T from the received packet and moves to the sleep
state. Again, when a node is waiting to receive DATA packets, if it
receives an RTS where it is also an intended receiver, it drops that
packet since it has already committed to another node. In case of
DATA packet reception before a CRA packet transmission, the node
immediately moves to the sleep state.

After receiving a CRA packet, the RTS sender stores the packet in
a buffer. It keeps performing this until the timer expires. and then
checks the buffer to count the number of CRA packets it receives
from various receivers. If this number is lower than expected, it
withholds the communication and goes to the idle state. Since the
packets previously picked for transmission from its buffer (and thus
marked SELECTED) are not transmitted in this case, they are marked
back as NOT_YET_TX.

3.2 Data Packet Transmission
After the CRA reception timer expires, the RTS sender again starts

sensing the channel for a random duration to make sure that no
communication is ongoing. It only refrains from transmitting if it
receives a DATA packet from another node, which in turn makes it
move to the sleep state. In case the node should receive an RTS

or CRA packet, it drops them, and instead keeps waiting for the
expiration of the sensing timer. When the timer expires, the node
moves to the data transmission state. It only transmits those DATA
packets which have been chosen for transmission when the RTSwas
generated, and were therefore marked as SELECTED. The status of
each transmitted DATA packet is advanced to WAITING_FOR_ACK
after the transmission has been performed. We note that every DATA
packet carries a flag that makes it possible to identify the last packet
to be transmitted in the current session. Any node that receives a
DATA packet marked as the last one moves to the idle state.

Note that the inclusion of the session duration in every packet
increases the overhead bits spent to organize the network traffic.
However, this information is very helpful for two reasons, namely
i) it makes it possible for a joining node to easily detect the ongo-
ing communications and their duration, and ii) if a node wakes up
too early during an ongoing session (e.g., due to a drifting internal
clock) it can read the remaining session duration from any DATA

packet it receives from its neighbors and thereby move back to the
sleep state again.

3.3 Cross-Layer based S&W ARQ
To compensate for the packet transmission errors that likely oc-

cur in UANs, while keeping the additional overhead to a minimum,
we embedded a S&W error control protocol in MACA-APT in a
cross-layer fashion. Among other things, this makes it possible to
avoid the potential ACK storms that may occur in a MAC proto-
col that targets multiple packet transmissions to multiple receivers.
Sending reports on previous successful transmissions is the purpose
of the CRA packets introduced in Section 3.1.

When a node generates a CRA packet, it digs into its reception
buffer to discover all packets for which an acknowledgment has
not yet been delivered to the current RTS sender. As it would re-
quire too many bits to selectively report the sequence number of
all packets to be acknowledged, a node only includes the lowest
and highest sequence numbers and a bitmap in the packet. An ex-
ample of such bitmap is shown in Fig. 1 where every bit refers
to a packet. The lowest sequence number represents the first bit
of the map and the highest represents the last bit. A 1 means that

Figure 1: An example of acknowledgment bitmap generation

based on the receiver buffer The first entry in the bitmap cor-

responds to the packet with sequence number 1256, whereas

the last entry corresponds to the last received packet (1264).

the corresponding packet has been received successfully, whereas
a 0 means it is not received or has been dropped because of er-
rors. After sending the CRA, the node releases the buffer and de-
livers the acknowledged packets in order to the application layer
(in Fig. 1, packets 1256 to 1258). When an RTS sender receives
a CRA packet, it utilizes the highest and the lowest sequence num-
bers mentioned in the packet, as well as the bitmap, to discover
all successfully delivered packets. It then deletes all the delivered
packets from the buffer, whereas any erroneous packets are marked
back as NOT_YET_TX, so that they can be transmitted at a later at-
tempt. Packets can be retransmitted up to a user-defined maximum
number of times.

4. SIMULATION SCENARIOS
The performance of the proposed MACA-APT protocol is evalu-

ated via a simulation campaign and by considering various aspects
which influence the performance of the protocol. All simulations
are carried out using the DESERT Underwater framework [12,13],
which can realistically reproduce complex interactions between mul-
tiple nodes over a shared communication medium. TheWorld Ocean
Simulation System (WOSS) [11, 13] has also been used in order to
accurately reproduce the behavior of underwater acoustic channels
via the Bellhop ray tracing software [14], to which WOSS auto-
matically feeds environmental data based on the configuration of
the network simulation.

For simulation, we chose an area in the Mediterranean Sea, near
the Pianosa Island, Italy, which is set at (42.590◦N, 10.125◦E).
The network covers an area of 1500 m × 1500 m. Every node is
placed randomly within the area and one meter above the seabed
at its own location, as acquired from the bathymetry database [15].
The Binary Phase Shift Keying (BPSK) modulation technique is
utilized by all the nodes at a bit rate of Rb = 4800 bps. The
length of DATA packets is fixed to 125 Bytes, and the size of the
other packets is dynamically managed depending on the informa-
tion to be included in them. We perform simulations for several
values of the data generation rates per node, e.g., λ′ = 2 bps up to
λ′ = 100 bps of payload information per generating node per des-
tination. The traffic is generated randomly according to a Poisson
process. At the beginning of each simulation run, the number of
destinations per node is chosen uniformly at random between two
and the maximum number of potential receivers N − 1, where N
is the number of network nodes. The results of the simulations are
averaged over 25 runs. Most of the simulations in this paper are
conducted using 5 nodes unless otherwise mentioned.

We compare MACA-APT against another MACA-based proto-

10
−3

10
−2

−0.2

0

0.2

0.4

0.6

0.8

Normalized packet generation rate per node per receiver, λ

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

MACA−APT, M = 5

MACA−APT, M = 10

MACA−APT, M = 15

MACA−MN, M = 5

MACA−MN, M = 10

MACA−MN, M = 15

Figure 2: Packet Delivery Ratio vs. normalized packet genera-

tion rate per node, λ, for a network of N = 5 nodes.

10
−3

10
−2

0

0.05

0.1

0.15

0.2

0.25

0.3

Normalized packet generation rate per node per receiver, λ

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

MACA−APT, M = 5

MACA−APT, M = 10

MACA−APT, M = 15

MACA−MN, M = 5

MACA−MN, M = 10

MACA−MN, M = 15

Figure 3: Normalized Throughput vs. normalized packet gen-

eration rate per node, λ, for a network of N = 5 nodes.

col named MACA-MN [5], which is the most similar to MACA-
APT among the protocols in the literature. An overview of this
protocol is given below in Subsection 4.1

4.1 MACA-MN protocol
Similar to our proposed MACA-APT protocol, the MACA-MN

can also transmit multiple packets to multiple neighbors during a
single session. In MACA-MN, a node triggers an RTS in one of the
following two cases: i) if it has not transmitted an RTS for a given
time duration Tmax; and ii) if it has an adequate number of packets
(Mtrain) in the buffer. A sender generates an RTS packet, which
includes the ID of all neighbors to which it wishes to transmit DATA
packets. It then broadcasts the packet locally and starts a waiting
timer to listen to the replies from its neighbors. When an intended
destination receives an RTS packet and is in the idle state, it replies
with a CTS packet. The RTS sender buffers a received CTS packet
which is intended for it during the listening period. After the timer
expires, the sender moves to the data transmission state and sends
the DATA packet to those neighbors from which it received a reply.

4.2 Simulation Results
We divide our simulation campaign into two parts. In the first

part, we compare our proposed protocol with a modified version
of the MACA-MN protocol which is discussed in Subsection 4.1;
in the second part, we investigate the performance of MACA-APT
by changing the maximum number of packets that a node can send
in the same train. We note that the original MACA-MN protocol
does not embed any error correction technique. In order to achieve
a more fair comparison, we modified MACA-MN by including a
S&W ARQ scheme in it as well. Figs. 2 and 3 show the packet de-
livery ratio (defined as the ratio of the number of packets correctly
delivered to their intended destination to the number of generated
packets) and the normalized throughput (defined as the number of
packet correctly delivered per packet transmission time), respec-
tively, as a function of λ = λ′/Rb, where Rb is the transmission
bit rate.

From Figs. 2 and 3, it can be observed that for any value of λ
MACA-APT outperforms MACA-MN. There are a couple of sig-
nificant reasons for these performance differences. In case of data
transmission, MACA-APT adopts a conservative approach whereas
MACA-MN adopts a greedy approach: MACA-APT prescribes

that lack of reception of an expected CRA (even from only one
among multiple neighbors), should make the sender refrain from
data transmission and schedule a later attempt. Conversely, MACA-
MN requires that a node transmits packets to all neighbors that
correctly answered with a CTS. This greedy data transmission ap-
proach introduces more collisions in the network, and results in
lower packet delivery ratio as well as lower normalized throughput.
Moreover, as opposed to MACA-MN, MACA-APT is opportunis-
tic since it transmits DATA packets utilizing an adaptive train size,
depending also on the number of packets available in the buffers of
the senders at the time an RTS is generated.

We now turn to investigating the performance of MACA-APT by
changing the maximum number of packets that a node can send in
the same train. We consider a single link between N = 2 nodes
as well as a network of N = 5 nodes. The node locations are
set so that the network is fully connected, in order to maximize the
stress on theMAC protocol. Since our objective is to investigate the
optimum number of consecutive packet transmissions, we consider
several values for the packet train size, M , from 1 to 20.

In Fig. 4, we report the PDR against λ for different values of
M and N . We observe that the choice of M = 5 or higher re-
sults in the highest PDR (close to 1) for N = 2. On the other
hand, M does not have any impact on the network performance
at lower packet generation rates, for N = 5. However, with in-
creasing traffic, higher values of M result in higher PDR except
when M = 20. This performance difference is due to the higher
number of contenders competing for channel access. In particu-
lar, for higher values of M , a node transmits more packets during
each channel access, on average. In turn, other nodes wait longer
for their chance to transmit. When a session ends, all the waiting
nodes start their own attempt, and the intense contention that re-
sults leads to a high probability of collisions among MACA-APT’s
RTS/CRA signaling messages. Hence, a node may fail to complete
the handshake, or multiple nodes may erroneously access the chan-
nel. In the former case, the channel is underused, whereas in the lat-
ter case, the packet trains transmitted by different nodes are likely
to collide. If the value chosen for M is too small, on the other
hand, the channel becomes underused as well, because the num-
ber of packets transmitted per channel access is too small. In the
scenario presented here, choosing M = 5 leads to the optimum
tradeoff between these two undesirable working points.

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized packet generation rate per node per receiver, λ

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

N = 2, M = 1

N = 2, M = 2

N = 2, M = 5

N = 2, M = 10

N = 2, M = 15

N = 2, M = 20

N = 5, M = 1

N = 5, M = 2

N = 5, M = 5

N = 5, M = 10

N = 5, M = 15

N = 5, M = 20

Figure 4: Packet Delivery Ratio for MACA-APT vs. normal-

ized packet generation rate per node, λ, for different number

of nodes N and different packet train size M .

10
−3

10
−2

0

0.05

0.1

0.15

0.2

0.25

0.3

Normalized packet generation rate per node per receiver, λ

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

N = 2, M = 1

N = 2, M = 2

N = 2, M = 5

N = 2, M = 10

N = 2, M = 15

N = 2, M = 20

N = 5, M = 1

N = 5, M = 2

N = 5, M = 5

N = 5, M = 10

N = 5, M = 15

N = 5, M = 20

Figure 5: Normalized Throughput for MACA-APT vs. normal-

ized packet generation rate per node, λ, for different number

of nodesN and different packet train size M .

From Fig. 5, we further observe that for increasing values of M
up to M = 15, the throughput also increases. When M = 20,
the throughput drops for the same reason already mentioned for the
PDR in Fig 4. The general behavior of the curves is to increase
for increasing values of λ and finally level to a value that depends
on N and M . For the values considered in this set of simulations,
the highest normalized throughput (about 0.35) is achieved when
N = 5 and M = 15.

5. CONCLUSIONS
In this paper, we proposed a new MACA-based Adaptive Packet

Train (MACA-APT) protocol for administering channel access in
UANs. MACA-APT transmits a train of packets of adaptive size
to help compensate the protocol overhead and the typically long
propagation delays incurred in UANs. MACA-APT also embeds
a cross-layer S&W ARQ scheme. This technique causes a min-
imal increase to the protocol overhead thanks to a modified CTS

packet, called CRA, which includes a delivery report to notify the
sender about correctly received packets. We conducted a simu-
lation campaign to evaluate MACA-APT and compare its perfor-
mance against that of a similar competing protocol. We finally
demonstrate the impact of the packet train size on the performance
of MACA-APT. The latter results can be used as a starting point to
tune the performance of any other MACA-based protocol employ-
ing packet train transmissions.

Acknowledgements

This work has been partially supported by the US Office of Naval
Research under Grant no. N62909-14-1-N127.

6. REFERENCES
[1] IEEE 802 LAN/MAN Standards Committee, “Wireless LAN

Medium Access Control MAC and Physical Layer (PHY)
Specifications,” IEEE Standard 802.11, 1999.

[2] H.-H. Ng, W.-S. Soh, and M. Motani, “MACA-U: A media access
protocol for underwater acoustic networks,” in Proc. IEEE

Globecom, New Orleans, Louisiana, USA, Dec. 2008.

[3] W. Lin, E. Cheng, and F. Yuan, “A MACA-based MAC protocol for
underwater acoustic sensor networks,” Academy Publisher Journal
of Communications, vol. 6, no. 2, pp. 179–184, Dec. 2011.

[4] F. Guerra, P. Casari, and M. Zorzi, “A performance comparison of
MAC protocols for underwater networks using a realistic channel
simulator,” in Proc. MTS/IEEE Oceans, Biloxi, MS, Oct. 2009.

[5] N. Chirdchoo, W.-S. Soh, and K. C. Chua, “MACA-MN: A
MACA-based MAC protocol for underwater acoustic networks with
packet train for multiple neighbors,” in Proc. IEEE VTC Spring,
Singapore, May 2008.

[6] H.-H. Ng, W.-S. Soh, and M. Motani, “ROPA: A MAC Protocol for
Underwater Acoustic Networks with Reverse Opportunistic Packet
Appending,” in Proc. IEEE WCNC, Sydney, Australia, Apr. 2010.

[7] ——, “BiC-MAC: Bidirectional-Concurrent MAC Protocol with
Packet Bursting for Underwater Acoustic Networks,” in Proc.

MTS/IEEE OCEANS, Seattle, WA, Sep. 2010.

[8] M. Stojanovic, “Optimization of a data link protocol for an
underwater acoustic channel,” in Proc. IEEE Oceans, Brest, France,
Jun. 2005, pp. 68–73.

[9] S. Basagni, C. Petrioli, R. Petroccia, and M. Stojanovic, “Optimized
packet size selection in underwater wireless sensor network
communications,” IEEE J. Ocean. Eng., vol. 37, no. 3, pp. 321–337,
Jul. 2012.

[10] S. Azad, P. Casari, and Michele Zorzi, “The underwater selective
repeat error control protocol for multiuser acoustic networks: Design
and parameter optimization,” IEEE Trans. Wireless Commun.,
vol. 12, no. 10, pp. 4866–4877, Oct. 2013.

[11] F. Guerra, P. Casari, and M. Zorzi, “World Ocean Simulation System
(WOSS): a simulation tool for underwater networks with realistic
propagation modeling,” in Proc. ACM WUWNet 2009, Berkeley, CA,
Nov. 2009.

[12] R. Masiero, S. Azad, F. Favaro, M. Petrani, G. Toso, F. Guerra,
P. Casari, and M. Zorzi, “DESERT Underwater: an
ns–MIRACLE-based framework to DEsign, Simulate, Emulate and
Realize Test-beds for Underwater network protocols,” in
Proc. MTS/IEEE OCEANS, Yeosu, South Korea, May 2012.

[13] P. Casari, C. Tapparello, I. Calabrese, F. Favaro, G. Toso, S. Azad,
R. Masiero, and M. Zorzi, “Open-source suites for the underwater
networking community: WOSS and DESERT Underwater,” IEEE
Network, special issue on “Open Source for Networking:

Development and Experimentation”, vol. 28, no. 5, pp. 38–46, Sep.
2014.

[14] M. Porter et al., “Bellhop code.” [Online]. Available:
http://oalib.hlsresearch.com/Rays/index.html

[15] “General bathymetric chart of the oceans.” [Online]. Available:
www.gebco.net

