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Abstract—We focus on detection and time-of-arrival (ToA)
estimation of underwater acoustic signals of unknown structure.
The common practice to use a detection threshold may fail
when the assumed channel model is mismatched or when noise
transients exist. We propose to detect and evaluate the ToA by
labeling samples of observed data as ‘signal’ or ‘noise’. Then,
signal is detected when enough samples are labeled as ‘signal’,
and ToA is estimated according to the position of the first ‘signal’-
related sample. We take a clustering approach, thereby obviating
the need for a detection threshold and training. Our method
combines a constrained expectation-maximization (EM) with the
Viterbi algorithm, and becomes handy when channel conditions
are rough, noise statistics is hard to estimate, and signal-to-noise
ratio is low. Numerical and experimental results show that, at
the cost of some additional complexity, our proposed algorithm
outperforms common benchmark methods in terms of detection
and false alarm rates, and in terms of accuracy of ToA estimation.

Index Terms—Expectation-maximization, Viterbi algorithm,
Detection in low SNR, Time-of-Arrival estimation, Acoustic
detection, Clustering

I. INTRODUCTION

Detection and time-of-arrival (ToA) estimation of underwa-
ter acoustic signals of unknown structure are the cornerstone
of a multitude of applications. Detection of underwater acous-
tic signals is used to explore acoustic emissions of marine
mammals, to passively identify projected noise of vessels, and
to discover events such as underwater volcano eruptions. The
ToA of the detected signals is required to estimate the range
to source, and to study the source of emissions. Without prior
knowledge of the structure of the required signals through
e.g., a learning or a training phase, detection of underwater
acoustic signals is challenging. The signals are of unknown
length and structure, and may change in time. In addition, the
distribution of the ambient noise is unknown and may include
noise transients.

While simple blind detection techniques such as variants of
the energy detector [1] seem the ideal solution for the problem
at hand, in the considered harsh conditions these techniques
will likely fail. This is because when the distribution of the am-
bient noise is mismatched with the assumed model, threshold-
based detection may be triggered by any small transient.
Another approach is cyclostationary analysis (cf. [2]), where
detection is based on estimating some cyclic features the signal
is assumed to possess (e.g., carrier frequency). However, the

performance of this approach dramatically decreases when the
desired signal is in the form of impulse-like or pseudo-random
noise. Instead, we propose to jointly perform detection and
ToA estimation by labeling the samples of observed data as
signal or noise. Then, detection is decided based on, e.g., a
minimum number of observations identified as ‘signals’, and
ToA is determined as the position of the first signal-related
observation.

To better explain the considered scenario and the problem
at hand, consider the reception of an acoustic signal of short
duration. The ambient noise is modeled as a Gaussian process
N ∼ (0, 1) and the emitted signal is cos (2πtiFc) , ti =
1, . . . , TFs , where Fc = 100 Hz, Fs = 500 Hz, T = 150 ms.
The signal is passed through a delay line channel with five
taps. At the beginning of the observed buffer, the observations
are related to the ‘noise’ state. At time instant 0.2 s, the signal
arrives and the observations remain related to the ‘signal’
state until time instant 0.5355 s, after which the observations
are related to the ‘noise’ state. This example is demonstrated
in Figure 1, where we show detection results of a K-means
clustering [3] by marking the noise-related observations as
‘X’ and the signal-related ones as circles, as well as detection
results for the constant false alarm rate (CFAR) energy detector
with a target false alarm probability of 10−4 [1]. The figure
shows that using K-means clustering, the the time-of-arrival
error is roughly 50 ms with a 60% error in the identification
of the signal state. Using the energy detector, we observe a
significant error in the estimated ToA as well as two false
alarms. As Figure 1 reveals, due to the periodic nature of
the signal and the strong ambient noise, there are similarities
between the values of some of the observations related to the
‘signal’ state and the observations related to the ‘noise’ state.
As a result, it may be hard to distinguish between the different
states, and naive clustering of the observations assuming an
i.i.d. state vector yields frequent clustering errors.

Without training, classifying the data samples is difficult.
Instead, we adopt a Hidden Markov Model (HMM) and
perform clustering. Each hidden node is connected to either
a signal-related observation or a noise-related observation.
Consequently, the connections between the nodes represent
the transitions between states. This way, the objectives of
signal detection, ToA estimation, and parameter evaluation are
transformed into evaluating the value of the hidden nodes.
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Fig. 1: Example of a signal to detect.

We propose a two step algorithm. In the first step, we
use a constrained EM algorithm to calculate the statistical
parameters of each state. These parameters are used to evaluate
the prior probabilities of the observations and the posterior
probabilities of the states. In the second step, we use the
estimated statistical information to evaluate the state transition
matrix and the observation emission probabilities, and to per-
form clustering using the Viterbi Algorithm (VA) for HMM.
Considering the unknown distribution of both the signal and
noise states, we allow model flexibility by using a general
Gaussian mixture model. The result is a high-complexity
detection scheme that does not assume knowledge of the
signal, noise, or channel, and therefore does not use a detection
threshold. Results from numerical simulations and a field
experiment show that our algorithm outperforms benchmark
techniques.

II. SYSTEM MODEL

Our setting includes a vector of N observation samples, x.
We assume the received observation samples are a mixture
of two i.i.d. random processes. Specifically, each observation,
xi ∈ x, is associated with a state m where m = 1 represents
the ‘signal’ type and m = 2 reflects the ‘noise’ type. The
two possible states are represented by hidden nodes to form
a 2 × N trellis. The relations between the hidden nodes are
expressed by a 2×2 transition matrix T whose tm,n element is
the transition probability from state m to state n. The emission
probabilities of the observations are denoted as Pr(xi|ωj),
where ωj is the set of distribution parameters of the jth state.

We consider a binary hypothesis model, where the received
sample vector consists of 1) either noise and signal, or 2)
noise only. This model renders the formation of consecutive
observation sequences of unknown length, and sparse states
are unlikely. Specifically, in case of hypothesis 1) there are a
maximum of three consecutive groups in the order: ‘noise’,

‘signal’, and ‘noise’, while in case of hypothesis 2) there is
only one group of ‘noise’. Since the transition between states
is rare, we expect ti,i to be close to 1. However, since we
do not assume to know the length of the signal, T remains
unknown. Furthermore, the properties of the two states are
also assumed unknown and hence Pr(xi|ωj) is not given.

For the prior probabilities, we consider a mixture of distri-
butions:

p(x|θ) =

N∏
i=1

2∑
m=1

kmp(xi|ωm) , (1)

where θ = [ω1, k1, ω2, k2], ωm are the parameters of the mth
distribution, and km is the probability of the mth distribution,
with k1 + k2 = 1. We model the probability density function
p(xi|ωm) using the generalized Gaussian PDF [4],

p(xi|ωm) =
βm

2σmΓ
(

1
βm

)e−(
|xi−υm|
σm

)βm
(2)

with parameters ωm = [βm, υm, σm]. While common practice
uses the normal Gaussian mixture model, (2) provides flexi-
bility, where βm = 1, βm = 2, and βm → ∞ correspond to
the Laplace, Gaussian, and uniform distributions, respectively.

We assume that the desired signal changes rapidly in time,
and that its variance can be upper bounded by a sanity check
bound, Tσ , and lower bounded by the variance of the noise
signal. Thus, denoting ς1, ς2 as the respective variances of
observations related to the two states, we have

ς2 < ς1 < Tσ . (3)

Since, for the PDF (2),

ςm = (σm)
2

Γ
(

3
βm

)
Γ
(

1
βm

) , (4)

and since by (4) ςm does not change much with βm, constraint
(3) can be modified into

σ2 < σ1 < Tσ

√√√√√Γ
(

1
β1

)
Γ
(

3
β1

) . (5)

III. LABELING OF SAMPLES

Our algorithm starts with an initialization phase to find an
estimation for the set of distribution parameters, θ0, and to pre-
group observations seemingly related to the same state. Next,
a constrained EM is performed to find the prior and posterior
probabilities, Pr (xi|ηi) and Pr (ηi|xi), respectively. Finally,
we estimate the transition matrix and the emission probabilities
and use the VA to obtain the clusters ηi, i = 1, . . . , N .

A. Initialization

To estimate θ0, we perform initial clustering using the K-
means algorithm [3]. The result is an initial clustering η̂0

i ,
followed by grouping of all sample observations for which



η̂0
i = m, m = 1, 2 into vectors xm. Then, we statistically

find the parameters ω0
m of distribution (2) by solving

k0
m =

|xm|
|x|

(6a)

υ0
m = E [xm] (6b)

ς0m = Var [xm] (6c)

κ0 = K [xm] , (6d)

where |x| is the size of vector x, ςm =
σ2
mΓ( 3

βm
)

Γ( 1
βm

)
, and

K [xm] is the Kurtosis of xm which for distribution (2) is

κ0 =
Γ( 5

βm
)Γ( 1

βm
)

Γ( 3
βm

)
2 − 3.

B. The Constrained EM

The constrained EM algorithm is performed iteratively. In
the (q + 1)th iteration, the expectation of the log-likelihood
function is maximized to find the set of parameters θq+1.
This maximization is performed under constraints (5). The
procedure is then repeated for a pre-determined number Q
of iterations (or until convergence is reached), and the con-
vergence to a local maximum is proven [3]. Let λ be the
clustering solution vector of the observations in x. Given the
previous estimate θq , the expectation of the log-likelihood
function with respect to the conditional distribution of λ is

L(θq+1|θq) = E
[
ln
(
Pr(x,λ|θq+1)

)
|x,θq

]
=

2∑
m=1

[
N∑
i=1

Pr(λi = m|xi,θq) ln p(xi|ωq+1
m )

+

N∑
i=1

Pr(λi = m|xi,θq) ln kq+1
m

]
, (7)

where lnx is the natural logarithmic function. Since the
observations are assumed independent,

Pr(λi = m|xi,θq) =
kqmp(xi|ωqm)

p(xi|θq)
=

kqmp(xi|ωqm)∑2
j=1 k

q
jp(xi|ω

q
j )
.

(8)
Observing (7), we estimate ωq+1

m by maximizing the first term
of (7) and kq+1

m by maximizing the second term. For the latter,

kq+1
m =

1

N

N∑
i=1

Pr(λi = m|xi,θq), m = 1, 2 . (9)

For the PDF (2), let us denote the first term of (7) as

f(υq+1
m , σq+1

m , βq+1
m ) =

N∑
i=1

Pr(λi = m|xi,θq)

·
[
lnβq+1

m − ln(2σq+1
m )− ln Γ(

1

βq+1
m

)

−
(
|xi − υq+1

m |
σq+1
m

)βq+1
m

]
. (10)

Then, ωq+1
m is found by solving

ωq+1
1 , ωq+1

2 = argmin
ω1,ω2

−
2∑

m=1

f(υm, σm, βm) (11a)

s.t. : σ2 − σ1 ≤ 0 , (11b)

σ1 − Tσ

√√√√√Γ
(

1
β1

)
Γ
(

3
β1

) ≤ 0 . (11c)

We observe that problem (11) is non-convex. To solve it,
we use the alternating optimization approach (cf. [5]), where
a multivariate maximization problem is iteratively solved
through alternating restricted maximization over individual
subsets of the variables.

C. Clustering

After Q EM iterations, the estimated parameters ωm are
used to estimate the posterior Pr(λi = m|xi,θQ) using (8)
and the prior p(xi|λi = m,θQ) using (2). The latter is used
directly to find the emission probabilities. For the transition
matrix, T , we find element tm,n by

tm,n =
Pr(λi+1 = m,λi = n)

Pr(λi = n)
, m = 1, 2, n = 1, 2 . (12)

While the denominator of (12) can be found by

Pr(λi) =
Pr(λi|xi)Pr(xi)

Pr(xi|λi)
, (13)

and

Pr(xi) =

2∑
m=1

kQmp(xi|ωm) , (14)

the numerator of (12) cannot be found analytically. Instead,
we find it statistically by setting

λi = argmax
m

[
Pr
(
xi = m|xi,θQ

)]
, (15)

and counting the percentage of times λi = n and λi+1 = m.
Once the transition matrix and the emission probabilities are
calculated, we use the VA to match observation xi with state
m and to obtain clusters ηi, i = 1, . . . , N .

IV. PERFORMANCE ANALYSIS

In this section, we compare the performance of our al-
gorithm for detection and signal characterization (EM-VA)
with the energy detector (ED), the basic unconstrained EM
clustering for the Gaussian-mixture model (EM), the Baum-
Welch algorithm for normal Gaussian-mixture HMM (Baum-
Welch), and the Baum-Welch algorithm where the EM pro-
cedure of the Baum-Welch method is replaced by the simple
K-means clustering (K-means). For the ED method [1], we use
a time window of 10 samples and set the detection threshold
according to a target false alarm rate of 10−4. As an upper
bound for the variance of the signal we use Tσ = 1.
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Fig. 2: Empirical C-CDFs of the clustering error for noise-only
reception (false alarm) for various detection methods.

A. Simulation

Our simulations include sequences of 500 samples of either
ambient noise or ambient noise plus signal. In each simulation,
the noise is generated as a zero mean general Gaussian random
process with parameter β uniformly generated between 1 and
6, and σ is set by the desired SNR. In addition, we include
noise transients randomly placed at a rate of 1% across the set
of observations. These transients are generated noise samples
whose variance is 10ς2 (see (4)). For the desired signal, we
use a normalized cosine signal passed through a Gaussian
window. The length of the signal is chosen uniformly between
10 and 100 samples. The signal is transferred through a tap-
delay-line channel impulse response. The number of taps is
chosen uniformly between 5 and 50, the tap delay is set
uniformly between 10 and 100 samples, and the tap complex
amplitude is modeled as a Rayleigh process with variance
0.1. The location of the signal within the observed sequence
is randomized uniformly between samples 50 and 400. The
SNR is calculated as the power ratio between the sequence of
signal-related observations and the ambient noise.

In Figure 2 we show the empirical complementary-
cumulative distribution function (C-CDF) of the rate of sam-
ples falsely labeled as ‘signal’ when the received buffer
includes only noise (false-alarm). We observe that both the
Baum-Welch method, designed mainly for clustering, and the
ED produce many false detections. However, the false alarm
performance of the EM algorithm is far better. This is because
while also in the EM method noise transients are clustered
as signal samples, these errors do not propagate to further
erroneous decisions as in the cases of the Baum-Welch method
and of the energy detector. The dependency of these three
benchmark methods in the correct evaluation of the noise and
signal distributions is reflected by the results of K-means,
which are better than the former. This is because K-means
does not assume a given signal or noise distribution function.
Yet, the performance gain of our EM-VA method is clearly
observed where in most cases no single false alarm is detected.
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Fig. 3: Empirical C-CDFs of the clustering error for sig-
nal+noise reception (detection) for various detection methods.
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Fig. 4: (Simulation) Empirical C-CDFs of the ToA error.
SNR=8.8 dB, Fs = 1 kHz.

A similar gain is shown in Figure 3, where we compare the rate
of falsely labeled samples when the received buffer contains
both noise and signal with an SNR of 8.8 dB.

Figure 4 shows the C-CDF of the error in estimating the
ToA. To allow meaningful results, we use a sampling fre-
quency of Fs = 1 kHz. For the benchmark clustering methods
and for the ED, we observe significant errors in estimating the
ToA. This is because, in terms of ToA estimation, even a single
clustering error that occurs well before the true ToA due to,
e.g., a noise transient, will yield significant error in estimating
the ToA. Yet, also in terms of ToA estimation, clearly our EM-
VA scheme achieves the best results, with an average error of
roughly 15 ms.

B. Sea Experiment

To verify our assumptions and to test the effectiveness of our
scheme, we measured its detection performance for 20 min of
raw acoustic signals received during a sea experiment, which
was conducted off the shores of San Diego. The experiment
included a node drifting at depth 10 m and five anchored
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Fig. 5: Example of clustering result from the sea experiment.

beacons. Once every 5 s, each anchor transmitted a signal
consisting of three sequential linear chirps, each of duration
10 ms and in the frequency range of 8 kHz to 15 kHz. The
transmit power was estimated to be slightly above 190 dB
Re 1µPa @1m. The signals were recorded by the drifting
node with a sampling frequency of ∼65.5 kHz. Since the
signals were received at high power, to test the performance
at various SNR values, we synthetically added recorded noise
to the received signals. To measure the performance in terms
of number of corrected and falsely labeled samples, we found
the true position of the received signal by implementing the
normalized matched filter test as reported in [6].

Detection results for one captured buffer of 1.5 s from the
sea experiment are shown in Figure 5. The bottom figure
shows the normalized matched filter result with a significant
peak at roughly 0.95 s. We observe three false detections
identified by the ED method. These detections correspond
to noise transients. This shows the sensitivity of the ED
method to mismatch in the noise model. No false alarms
are observed for the Baum-Welch method. Yet, the ToA
estimation is slightly biased compared to the peak location of
the normalized matched filter. Similar results were obtained
for the K-means. On the contrary, our EM-VA method shows
no false alarms and accurately detects the true location of the
signal.

Average results for the detection of each of the 3600 linear
chirp signals are shown in Table I. In line with the simulation
results, we observe that the ED obtains poor performance.
Inspecting specific cases, we note that the problem of this
detector lies in estimating noise transients as ‘signal”, and as
a result, clustering the following noise samples as ‘signal’s’.
Due to the smoothing of the VA, the results of the Baum-
Welch and the K-means are much better. A surprising result
is the good performance of the EM benchmark method. A
possible explanation is the noise-like structure of the received
acoustic signal. Yet, the best performance is obtained by our
EM-VA method. We therefore conclude that also in real system

TABLE I: Average percentage results of correct and false
signal labeling from the sea experiment.

SNR
[dB] Measure Type ED EM Baum-

Welch
K-

means EM-VA

N/A False signal labeling 10% 2% 3% 1% 0%

5 Correct signal labeling 90% 92% 93% 91% 97%

10 Correct signal labeling 95% 95% 96% 98% 99%

20 Correct signal labeling 97% 99% 98% 98% 99%

conditions, at the cost of some complexity, the detection
performance of our proposed scheme exceeds that of all the
benchmark methods.

V. CONCLUSIONS

In this paper, we proposed a clustering approach for de-
tection and ToA estimation of underwater acoustic signals of
unknown structure. We used a combination of a constrained
general Gaussian mixture model EM algorithm and VA for
HMM clustering. The former allows estimation of the un-
known state transition matrix and the observation emission
probabilities, while the latter handles the expected low SNR.
The result is a robust detection scheme which does not
use a detection threshold. Our numerical and experimental
results showed that, at the cost of some additional complexity,
the performance of our algorithm exceeds that of common
benchmark solutions.
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