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Abstract: In this paper, we are interested in finding whether a statistical relationship exists 

between underwater acoustics and optics, despite the different physics that govern these 

technologies. Besides the theoretical interest of such a relationship, predicting the quality 

of the optical links through acoustics is relevant for multimodal communications. 

Our study is based on a large dataset acquired during the NATO ALOMEX 2015 expedition. 

The dataset consists of several acoustic and optical link characteristics measured at multi-

ple locations, reflecting a diversity of sea environments. Our results, based on a systematic 

machine learning analysis, show a strong correlation between the properties of acoustic 

links and the reliability of optical communications. Potentially, this can be leveraged to 

predict the state of underwater optical links. 
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INTRODUCTION 

Currently, the two top technologies for underwater wireless transmission are underwater 

acoustic communications (AC) and underwater optical communications (OC). AC is  



 

characterized by long-range (in the order of tens of km) but low-data-rate transmissions (up 

to a few kbps), and is considered highly unreliable due to the limited bandwidth, long delay 

spread, short channel coherence time, and dispersiveness that characterize the acoustic chan-

nel [1]. OC features high data rates (in the order of Mbps), but is only suitable over much 

shorter transmission ranges (practically up to tens of meters).  

AC and OC are driven by different physics. The former involves the propagation of a 

pressure wave and is modelled, e.g., via the so-called normal modes or empirical equa-

tions [2], whereas the latter is performed via electromagnetic waves whose propagation is 

driven by the radiative transfer equations [3]. The sources of noise in the underwater acous-

tic channel are also much different than those that affect the optical channel. For example, 

the irradiance and scattering of sunlight in the water are the main factors that affect OC. 

Although AC and OC are seemingly unrelated, it is of theoretical interest to show if there 

exists a combination of underwater acoustic properties that can be exploited to predict the 

state of underwater optical links at a given range and depth. 

While finding a relation between the AC and OC is of theoretical interest per se, such 

relation also has several practical applications. Predicting the characteristics of OC through 

AC, would help, e.g., guide a mobile node which holds both communication systems to a 

location where OC can be efficiently used. This application is specifically important for 

multi-modal underwater communication systems, where both OC and AC are utilized [4]. 

Moreover, exploiting a relationship between OC and AC would enable more effective 

switching mechanisms. 

In this work, we study the relationship between AC and OC from a statistical point of 

view in environments such as the open sea, where it can be assumed that the properties of 

optical links change slowly over time and space. Our work does not include a theoretical 

explanation of the mutual relation between AC and OC, but rather is limited to showing that 

such a relation exists, with the hope to stimulate further theoretical investigations. 

Our study is based on a large dataset of acoustic and optical link properties simultane-

ously measured over a prolonged time span and over different frequency bands. The dataset 

was obtained during the ALOMEX 2015 experiment led by the NATO STO CMRE, La 

Spezia, Italy. Using this dataset, we trained different learning models using support vector 

machines (SVMs) [5], with the goal of classifying the corresponding quality of the optical 

link at various distances and depths. The system was designed to maximize accuracy, while 

avoiding overfitting. 

Our results show a strong correlation between the properties of ACs and the overall qual-

ity of the OC, with a sufficient degree of accuracy to enable mechanisms that intelligently 

switch between acoustic and optical underwater communication technologies, as well as to 

evaluate the radiance properties of the water.  

BACKGROUND 

Acoustic communications basics ― Substantial differences exist between long-range deep 

water AC and short-range shallow water AC. Since multimodal systems are used for rela-

tively short ranges of a few km, we focus on the latter. The shallow water underwater chan-

nel is a time-varying frequency-selective channel, characterized by a long delay spread and 

a coherence time on the order of tens of ms [6]. Since the sea surface is continuously in 

motion, individual channel taps are affected by a Doppler shift that may vary up to tens of 

Hz. For typical sound speed values around 1500 m/s, this Doppler shift affects the duration 

of the received signal. The key parameters to predict the integrity of AC are the number of 

channel taps, their power and propagation delay, and the variation thereof over time. 



 

AC is also highly affected by the channel ambient noise, usually modelled as an isotropic 

coloured Gaussian process whose power spectral density reduces by 10 dB per octave [6]. 

However, the acoustic ambient noise may also include location-dependent, non-isotropic 

noise, whose time-varying characteristics also affect the performance of AC. The SNR 

(in dB) of a transmission performed at a frequency 𝑓𝑎 over a distance 𝑑 between the trans-

mitter and the receiver is empirically modelled as: 

 𝑆𝑁𝑅(𝑑, 𝑓𝑎) = 10 log10 (
𝑃𝑎

𝑁(𝑓𝑎) 𝛿𝑓𝑎
) − 𝐴(𝑑, 𝑓𝑎) (1) 

where 𝑃𝑎 is the source level (usually expressed in dB relative to 1 𝜇Pa @ 1 m from the 

source), 𝑁(𝑓𝑎) is the noise level, 𝐴(𝑑, 𝑓𝑎) is the power attenuation in dB, and 𝛿𝑓𝑎 is a narrow 

band around 𝑓𝑎 where we can assume 𝐴(𝑑, 𝑓) = 𝐴(𝑑, 𝑓𝑎) and 𝑁(𝑓) = 𝑁(𝑓𝑎). 

 

Optical communications basics ― Light traveling in the water interacts with the particu-

lates and dissolved materials within the water as well as the water molecules themselves. 

These interactions produce light attenuation (modelled via an attenuation rate per unit length 

travelled by the wave, termed 𝑐) that will determine the underwater light field, or radiance, 

denoted as 𝐿, and defined as the measure of light energy leaving an extended source in a 

particular direction. 

The parameters 𝐿 and 𝑐 are related through the radiative transfer equation (RTE), which 

relates the apparent and inherent optical properties of the medium [3]. The light attenuation 

rate 𝑐, the optical absorption rate 𝑎, and the loss rate due to scattering processes 𝑏 are related 

as 𝑐 = 𝑎 + 𝑏. If the inherent optical properties of the medium depend only on depth, inelas-

tic processes are ignored, and there are no internal sources, the time-dependent RTE is de-

scribed as [7] 

 cos 𝜃
𝑑𝐿(𝑧,𝜆,𝜃,𝜑)

𝑑𝑧
= −𝑐(𝑧, 𝜆)𝐿(𝑧, 𝜆, 𝜃, 𝜑) + ∫ 𝛽(𝑧, 𝜆, 𝜃′, 𝜑′ → 𝜃,𝜑)𝐿(𝑧, 𝜆, 𝜃′, 𝜑′)𝑑𝛺′

4𝜋
,(2) 

where 𝛽(∙) is the volume scattering function, which describes how the medium scatters light 

per unit length and solid angle. The polar angle 𝜃 and the azimuthal angle 𝜑 of a spherical 

coordinate system specify the scattered light direction, whereas the coordinates (𝜃′, 𝜑′) 

convey the direction of the incident light. The integration is performed over the unit sphere 

surface, and we recall that 𝑑𝛺′ = sin 𝜃′𝑑𝜃′𝑑𝜑′. At a given depth and wavelength, 𝐿 is 

usually referred to as the radiance distribution. The first term on the right hand side of (2) 

represents the loss of radiance along (𝜃, 𝜑), while the second term provides the gain in 

radiance from all other directions. Analytical solutions of the RTE (2) are possible only if 

scattering is negligible. Otherwise, as in the present work, (2) must be solved numerically, 

e.g., see [7]. 

For this study, we are interested in the scalar irradiance 𝐸0, measured over all directions, 

obtained by integrating radiance over the whole sphere as 

 𝐸0(𝑧, 𝜆) = ∫ 𝐿(𝑧, 𝜆, 𝜃, 𝜑)𝑑𝛺
4𝜋

. (3) 

In the case of light transmission for underwater optical communications, this will be affected 

by the ambient light, considered as noise and computed as 𝑁𝐴 = (𝑆 ∙ 𝐸0 ∙ 𝐴𝑟)
2, where 𝑆 and 

𝐴𝑟 are the receiver’s sensitivity and area, respectively. 

 

Overview of the machine learning approaches used for data analysis ― In this paper, 

we focus on a particular class of supervised statistical learning methods. Statistical learning 

approaches aim to infer the function that maps input data to output data, such that the learned 

function can be used to predict the output from future input. 



 

In particular, we use an efficient class of learning algorithms called support vector ma-

chines (SVMs) [5]. An SVM tries to achieve the best separation between patterns belonging 

to different classes by finding the maximum-separation hyperplane that has the largest dis-

tance to the nearest training data point of any class. As a result, this learning framework is 

particularly indicated when the available data is limited. A similar framework can be applied 

in the case of real-valued outputs (regression tasks) using a variant called Support Vector 

Regression (SVR) [8]. 

We consider both linear and non-linear SVMs. In linear SVMs, we assume that the pat-

terns are linearly separable. The equation of a linear SVM is expressed in the form 

 𝑓(𝑥) = ⟨�⃗⃗� , 𝑥 ⟩ + 𝑏 , (4) 

where ⟨∙,∙⟩ denotes the inner product in ℝ𝑛, and the vector �⃗⃗�  and scalar 𝑏 are used to define 

the position of the maximum-margin separating hyperplane. Geometrically, the distance be-

tween the two external hyperplanes is 2/|�⃗⃗� |, so we want to minimize |�⃗⃗� | such that each 

data point lies on the correct side of the margin. The SVM training procedure amounts to 

solving a convex quadratic problem. The solution is a unique globally optimum result, for 

which 

 �⃗⃗� = ∑ 𝛼𝑖𝑦𝑖𝑥 𝑖
𝑁
𝑖=1  . (5) 

The terms 𝑥 𝑖 are called support vectors. Once an SVM has been trained, the decision func-

tion can simply be written as 

 𝑓(𝑥 ) = sign(∑ 𝛼𝑖𝑦𝑖(⟨𝑥 , 𝑥 𝑖⟩) + 𝑏𝑁
𝑖=1 ) . (6) 

The non-linear SVM uses the so-called kernel trick, implicitly mapping the inputs into 

higher-dimensional feature spaces. The resulting algorithm is formally similar to that of a 

linear SVM, except that every dot product is replaced by a non-linear kernel function 

𝐾(𝑥 , 𝑥 𝑖). This allows the algorithm to fit the maximum-margin hyperplane in a transformed 

feature space. In this work we use the popular Gaussian Radial Basis Function (RBF) kernel: 

 𝐾(𝑥 , 𝑥 𝑖) = exp(−|𝑥 − 𝑥 𝑖|
2/(2𝜎2))  . (7) 

DESCRIPTION OF THE ACQUIRED DATASET 

To validate our system we used a data set collected during the NATO ALOMEX 2015 

mission. The experiment spanned 13 days across 2800 km from Southern Spain to West 

Africa. During this expedition, we measured both acoustic and optical link properties in the 

nine different stations marked in Fig. 1. Some stations were sampled in the same locations 

but at different times. In each station, a data collection lasting over an hour took place. The 

locations noted in Fig. 1 were chosen to represent different channel conditions. Stations 1-

4 were located in the Mediterranean Sea, while Stations 5-9 were sampled in the Atlantic 

Ocean. 

The measurement equipment was hosted on board the 93 m-long R/V Alliance. The op-

tical properties were evaluated by probing the water column from the bow of the Alliance, 

while the acoustic transmissions took place from the stern. Acoustic measurements were 

obtained by transmitting and receiving acoustic signals over two different frequency bands: 

8-16 kHz (named LF in the following), and 18-34 kHz (HF). The receiver and transmitter 

were deployed horizontally. The LF data set was obtained by transmitting full-band linear 

chirps at regular intervals, whereas the HF data set was obtained thanks to the functions 

 

 



 

 

 

# LF band HF band 

1 Noise level 

2 RSSI 

3 Delay spread 

4 RMS channel tap amplitude 

5 Number of channel taps 

6 SNR Integrity 

7 Channel length  

8 Noise coherence time  

9 Channel coherence time  
 

Table I: List of measured acoustic channel prop-

erties in the LF band and HF bands. Blue prop-

erties are common to both bands. 

 
Fig. 1.  Location of the measurement sites during 

the ALOMEX 2015 cruise. 
 

 

provided by EvoLogics modems. This allowed us to estimate 9 different properties for LF 

channels and 6 for HF channels, as listed in Table I. Since the optical data was used as 

labeling for training and testing only, no pre-processing was performed. In the context of 

multimodal systems, we focused only on classifying and predicting the optical SNR during 

both nighttime and daytime. However, the same procedure can be carried out for other op-

tical properties, such as the scattering or the total attenuation coefficients. 

The OC dataset was used to train the SVM for classification purposes. For classification, 

the training procedure involved a threshold to label the trained OC dataset as “good” or 

“bad,” where the threshold (15 dB and 10 dB for daytime and nighttime measurements, 

respectively) is chosen so that “good” and “bad” training links occur more or less the same 

number of times, to avoid overfitting. In Fig. 2a, we show the SNR of the measured OC 

links during daytime and nighttime. The values shown lead to a variation of roughly 70 dB 

in the range of SNR. Naturally, this produces a large change in the number of “good” and 

“bad” OC channels. More specifically, the choice of these threshold levels yielded a “good” 

to “bad” channel ratio of about 60%.  

Training was performed separately for the acoustic LF recordings at 5 m, the acoustic LF 

recordings at 10 m, and the acoustic HF recordings (10 m). The aim of training was to 

discriminate the corresponding quality of the optical signal (binary-valued classification 

task). To that end, the dataset was first divided into training sets (75% of the patterns) and 

test sets (25% of the patterns), and the latter were used to test the generalization capability 

of the models. We considered two kernel functions: the simple linear SVMs, and the non-

linear RBF kernel. To set the learning hyper-parameters, we adopted a k-fold cross-valida-

tion procedure, where one fold was randomly selected and left out to test the current settings 

of the hyperparameters. Based on the amount of data available, we used 3 folds for LF at 

5 meters, 4 folds for LF at 10 meters, and 5 folds for HF. To evaluate the robustness of our 

approach and to reduce the risk of overfitting, each SVM was trained 10 times. 

  



 

 
Fig. 2.  (a) Average values for the optical and acoustic SNR at different sites. Results show a range of 

roughly 70~dB during nighttime, and 40~dB during daytime for optical SNR. (b) Classification accu-

racy for daytime OC, obtained using linear SVM and RBF SVM. Results suggest a clear non-linear 

relationship between acoustic properties (mostly LF5) and OC. 

RESULTS 

The classification accuracy for the test sets is reported in Fig. 2b for both the linear SVM 

and the non-linear SVM with the RBF kernel. We explore classification using all three types 

of acoustic measurements. In all cases, the marked difference between the linear SVM and 

the RBF kernel suggests that the relation between the acoustic properties and the optical 

link quality is non-linear. In order to better assess the robustness of the findings, as a control 

simulation we also performed the same classification task using a Naïve Bayes classifier [9]. 

The average accuracy obtained using this algorithm was closely aligned with that obtained 

with the linear SVM. For this reason, in the following discussion we drop the comparison 

with the Naïve Bayes classifier and only consider the SVM models.  

The results indicate that the LF measurements provide a more accurate prediction of the 

quality of the optical link, approaching 100% of classification accuracy for the non-linear 

SVM. The LF measurements yield a much higher accuracy also for the linear SVM, except 

for the 35-m depth, 10-m range condition, where the performance of LF10 is similar to that 

obtained using HF.  

The classification accuracy for the test sets to predict the optical SNR during nighttime 

is reported in Fig. 3. Also in this case, the non-linear kernel clearly outperforms the linear 

SVM, achieving about 100% classification accuracy in all conditions. In fact, for many dis-

tance-depth pairs considered in Fig. 3, the performance of the linear SVM in is close to 

chance level (50%).  

Similar to the case of daytime optical transmission, in the nighttime scenario the LF 

measurements (LF5 in particular) are better predictors for the quality of the optical link. 

However, when using the linear SVM, HF sometimes still outperforms LF10, especially for 

the conditions corresponding to long distances (20-m range). This suggests that, in  

nighttime conditions, the HF signal can be more reliable than in daytime conditions, ap-

proaching a prediction accuracy of 100% for the non-linear SVM and of 80% for the linear 

SVM at long ranges. 

The high classification accuracy obtained for both the daytime and the nighttime predic-

tion of the quality of the optical link suggests a strong relationship between the acoustic 

 



 

 
Fig. 3.  Nighttime optical SNR classification accuracy results, suggesting a clear non-linear relation 

between AC and OC properties. 

properties and the OC quality. This relation seems to be non-linear, as the greatest accuracy 

is achieved by the SVM using the RBF kernel. 

In order to better evaluate the classifier performance across different conditions, three 

additional performance measures were also computed from confusion matrices [45]: preci-

sion (i.e., class agreement of the data labels with the positive labels given by the classifier), 

recall (i.e., effectiveness of the classifier to identify positive labels), and specificity (i.e., 

effectiveness of the classifier to identify negative labels). The complete results are reported 

in Table II. We observe that the obtained values for precision, recall and specificity are 

consistent across different acoustic datasets and environmental conditions, and are fully 

aligned with the accuracy results reported in Fig. 2 and Fig. 3. In particular, results show 

that indeed the non-linear classifier achieves much better performance on all metrics, and 

has no biases for any particular class.  

Interestingly, the data seem to suggest that linear classification using LF measurements 

improves close to the surface. This needs to be investigated further, as not all collected data 

show this same trend, and we have no further evidence to prove it. However, we still con-

jecture that linear classification might be in fact more precise near the surface. A possible 

explanation can be a high concentration of biological particles such as plankton in the upper 

water layer, which would scatter the acoustic wave and, during daytime, also sunlight. The 

collection of additional data in this specific scenario would be a necessary step to verify this 

conjecture. 

 

CONCLUSIONS 

In this work, we explored the statistical relationship between the properties of underwater 

acoustic and optical links for the purpose of classifying the quality of the latter and predict 

their SNR. We based our analysis on a large database including both optical and acoustic 

measurements. Our results indicate a clear relation between acoustic link properties and the 

quality of optical links. Using the RBF SVM classifier, we were able to predict the quality 

of optical links with an accuracy close to 100%. Our classification and algorithms can read-

ily serve as a switching mechanism for multimodal systems that combine underwater acous-

tic and optical communications. 



 

 
 

Table II.  Precision, recall and specificity values for all classification tasks. 
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