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Abstract—The use of swarms of Autonomous Underwater
Vehicles (AUVs) for environmental monitoring operations could
provide important data about pollution, but is currently limited
by the high costs of the AUVs and their communication equip-
ment. In this work, we design a system that exploits a multimodal
network, composed by both USBL low-frequency and low-cost
high frequency acoustic modems, at a much lower cost than
standard single mode deployments, and uses distributed sensing
and communication-based ranging to perform the localization of
an AUV swarm. Our system is able to maintain a positioning
error below 13 m over long time periods in different operational
scenarios, at a fraction of the cost of the single mode system, and
concentrating all the expensive equipment in the leader AUV.

Index Terms—Underwater multimodal networks, Kalman fil-
ter, DESERT Underwater, WOSS, Bellhop ray-tracer.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are submersible
underwater nodes able to accomplish a pre-loaded mission
with a high level of autonomy. Their missions can cover a
large set of applications [1]: scientific underwater exploration,
military applications, off-shore industrial applications [2], and
applications related to environment protection, like measuring
the level of pollution of shipwreck sites. The use of AUVs in
these types of missions is very effective compared to human
divers in terms of efficiency and risk to human lives.

Military and industrial missions usually involve large scale
and expensive AUVs, designed for diving thousands of meters
below the sea surface and fully equipped with very sophisti-
cated and expensive tools and sensors, whose prices can easily
exceed 1M EUR per unit [3], tailored for specific applications,
such as high-resolution 3D scanners [4] and multibeam echo-
sounders [5]. However, applications related to environmental
monitoring do not need such expensive equipment as they
typically require to inspect the characteristics and the quality
of the water column of a large littoral area.

For example, in the case of pollution monitoring, the
presence of microplastics in the seawater has been verified up
to a depth of 600 m. This kind of monitoring is usually of great
interest in coastal waters close to beaches and ports, where the
water depth is always less than 100 m. A small and cheap
AUV equipped with pollution sensors and communication
tools rated for a maximum depth of 200 m, with a price below
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50K EUR per unit [6]-[8], can perform the task in a cost-
effective manner.

The main challenge is the need to measure the level of
pollution in a wide area with high resolution in space and in
depth. To accomplish this task, a single AUV would require
several sweeps of the area, consuming time and energy. Due to
the lack of GPS, the longer the mission of an AUV, the higher
its drift from the original path [9]. Therefore, the drawback of
this solution is not just the time required to accomplish the
mission, but also the low level of spatial resolution due to the
position uncertainty. To overcome this issue, a coordinated
swarm of N AUVs can be employed to act as a distributed
sensor, reducing the duration of the mission by a factor of N
and improving the measurement resolution.

AUV formation control and maintenance have been of high
interest for the robotics research community in the last years,
with a special focus on proposing solutions for Coopera-
tive Navigation (CN), simultaneous localization and mapping
(SLAM), and state estimation through extended Kalman fil-
ter [10]. In a cooperative navigation system, the AUVs ex-
change information related to their relative range and direction
measurements between each other through an acoustic wireless
link [11] in order to improve their localization precision.
Several works related to AUV swarm formation [12]-[14]
focus on the design and evaluation of the localization and
navigation system itself, assuming the existence of a stable
and robust acoustic communication link between the AUVs.
However, this does not address the significant challenges of
the underwater communication channel, such as multipath,
low bandwidth, long propagation delay, and the acoustic noise
caused by shipping activity and the wind surface waves [15].

In this paper, we analyze the behavior of a leader-follower
formation, where the leader is responsible for tracking the fol-
lowers in order to ensure they are not drifting from the original
mission. Specifically, we propose and evaluate two different
networks, namely, a single mode low frequency acoustic (SM)
network, and a low-cost multimodal low frequency and high
frequency acoustic network (MM). We propose two different
communication scenarios for the MM network, considering
a centralized system (MM-C) in which all computation is
performed by the leader and the followers just report mea-
surements, as well as a distributed system (MM-D) in which
the followers implement their own tracking systems and report
their state instead of raw measurements.



Both the SM and the MM networks are composed of a
surface node (e.g., a surface buoy or a vessel) with a well
known position, equipped with a GPS receiver and a long
range low frequency (LF) acoustic modem, a leader AUV
equipped with an LF modem with both normal and inverted
ultra-short baseline (USBL) capabilities, and four additional
AUVs that act as the followers. In the SM network, all AUVs
are equipped with the LF acoustic modem, so the leader can
both communicate and track the followers with its USBL LF
acoustic modem [16].

SM is currently the most commonly used mode for AUV
networks, as it allows each AUV to communicate directly with
the surface node and estimate its position with high precision.
It relies on commercial off the shelf modems for long range
communication [16]-[18] that provide high performance and
precision, but have a significant cost, making large AUV
formations economically infeasible: prices can easily exceed
8K EUR per acoustic modem (or 16K EUR for a modem with
USBL capabilities), with a total communication equipment
cost of 16K EUR for the leader and 8K EUR for each follower.

In this paper, we show that it is possible to maintain an ac-
ceptable accuracy using the MM network configuration, which
requires far cheaper high frequency (HF) acoustic modems.
The precision of the localization will be slightly lower, as the
HF modems only have ranging capabilities, so only the leader
and the surface node can use the LF communication link. The
market for high frequency modems includes low-cost acoustic
modems which can transmit at a range of a few hundred
meters with a bitrate of a few tens to a few hundred bits per
second [19], such as the AHOI acoustic modem prototypes
developed by the Smartport group of TUHH [20], which have
an overall cost of about 600 EUR. We considered the use of
the AHOI modems for HF communication in the MM network:
in this case, the total cost per follower would be reduced by
an order of magnitude.

If we also use low-cost AUV models for the follower units,
such as the VENUS AUV developed by ENEA [6], the design
would concentrate all the most expensive equipment in the
leader unit. In addition to environmental monitoring, this setup
can also enable new applications, where, for instance, one of
the followers can be elected (or even “sacrificed”) for a “high
risk task” (e.g., for mine countermeasure or for shipwreck
inspection in a harsh environment) with a lower financial risk.
Both the SM and MM configurations are presented in Fig. 1.

The rest of this paper is organized as follows: Sec. II de-
scribes the system model and the proposed tracking framework
in detail, while Sec. IIl presents the simulation settings and
the scenarios we used to verify its performance. The results of
the simulation are discussed in Sec. IV, and Sec. V concludes
the paper, presenting some avenues of future work.

II. SYSTEM MODEL

In our model, the performance of network architectures
is given by the accuracy with which the leader tracks its
own position and those of the followers. To achieve this
task, the leader deploys a Bayesian estimator, which requires
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Fig. 1. AUV swarm coordinated with a single mode low frequency acoustic
network (above) and with a multimodal low frequency and high frequency
acoustic network (below).

knowledge of the evolution of the target state. Hence, the
leader assumes that each AUV is in uniform rectilinear motion
in the 3D space. We denote node i’s position at time ¢
as x;(t) = [z;i(t),y:(t), z:(t)], and its heading as p;(t) =
[0:(t), d:(t)], where 0;(t) and ¢;(t) represent its orientation
with respect to the frame of reference on the horizontal and
vertical plane, respectively. The motion equations of node i
are then given by:

zi(t+7) = xi(t) + cos(0:(t)) cos(¢i(t))vi(t)T
yi(t+7) = yi(t) + sin(6;(t)) cos(d;(t))vi(t)T , (1)
zi(t+7) = zi(t) + sin(¢; (¢))vi ()T

where v;(t) is the speed of the considered AUV. We highlight
that the motion equations in (1) are a simplified model of the
true movements of the target, whose behavior is independent
of the tracking system. Finally, we define the state of node @
at time ¢ as

si(t) = [zi(t), ys(t), zi(t), 05(t), Ps(t), vi(t)], 2

while the network state is given by the union of each different
state s;(t).

We assume each AUV to be able to measure its current
depth using a pressure sensor, as well as its current heading
using internal magnetometers and gyroscopes. However, we
do not consider independent GPS positioning, as underwater
attenuation is too strong to receive the signal from the satel-
lites. Hence, the internal measurement vector for node 7 at
time ¢ is

yialt) = [5(0),0:0), (1)) 3)

We model the measurement error as a multivariate Gaussian
random variable with a time-invariant diagonal covariance
matrix R;;, as the measurements come from independent
instruments. In both the SM and MM networks, the leader is
equipped with a USBL-capable LF modem, which allows to
estimate its relative position xg1(¢f) from the ship, which
maintains a static position. From now on, we denote the leader
as node 1 and the ship as node 0; when it receives a packet
from the ship, the leader achieves the following measure:

yo,1(t) = >A<0,1(t)7’4ﬁ1(t),170,1(75),6%,1(75)} . “4)



Besides updating its position and heading information, the
communication allows the leader to measure two more vari-
ables: the Euclidean distance between nodes ¢ and j, i.e.,
d; ;j(t) = ||xi(t) — x;(t)||2, which is estimated by measuring
the round trip time, and the relative speed between nodes 4
and j, ie., v;;j(t) = v;(t) — v;(¢), which is estimated by
measuring the Doppler effect. As above, the measurement
error is assumed to be a multivariate Gaussian random variable
with covariance Ry 1.

In our system, the leader also exchanges packets with the
follower nodes. Depending on the network configuration, the
leader can get the internal measurements of the follower, along
with additional information. If the communication between
AUVs is low-frequency (SM-C configuration), the leader can
get additional information: the LF modem allows the leader
to measure the angle of arrival of the signal, as well as the
target relative position, resulting in the measurement vector

yii (t) = [fii,l(t)vﬁ’l(t)»ﬁi,l(t)vﬂ?i,l(t)a21'(15)7l;i(t)} )

Instead, in the MM-C configuration the ranging and Doppler
information only allows the leader to estimate the distance be-
tween itself and the target and the relative velocity of the latter.
Therefore, each time it communicates with a follower with an
HF modem, the leader measures the following quantities:

yin C(t) = [ﬁi,l(t)vdal(t)vZi(t)v"/;i(t)} - (6)

Finally, in the distributed MM-D system, followers implement
their own tracking systems, based only on their internal mea-
surements. When they communicate with the leader, follower
nodes report the changes in their position as tracked by their
internal filter, giving the leader the measurement vector

YO0 = [P (0.dia (0. %00 . (D)

In all network configurations, we consider a multivariate
Gaussian random variable with covariance R, ; to represent
the measurement noise.

In order to estimate the full state of the system s(t), the
leader implements an Unscented Kalman Filter (UKF) [21],
which is a widely used tracking algorithm capable of dealing
with both linear and non-linear motion models. The update
equations for the position of each AUV are given by (1),
with an additional zero-mean Gaussian noise with covariance
matrix Q. The new information obtained at each time ¢ is
variable, and depends on whom the leader communicates with:
if it does not communicate during a time step of the filter,
its measurement vector coincides with y; 1(¢), while if it
communicates with follower i, it is given by a combination
of y1,1(t) and y;1(¢).

In both the SM and MM networks, the leader retrieves the
information from the other nodes in a round-robin fashion.
Specifically, it probes each node, one at a time, to receive
information about its state, while obtaining ranging infor-
mation by measuring the round trip time. While in the MM
network the leader can only use the USBL modem in in-
verse mode to estimate its own position when communicating

with the surface node, the SM network allows it to use the
USBL modem to track each of the followers as well. The
MM-D tries to overcome this limitation by improving the self-
tracking capabilities of the follower nodes. However, such an
implementation entails the transmission of a larger amount of
information between AUVs, and, therefore, the leader receives
fewer updates.

The MM network presents another issue: the follower nodes
have no direct contact with the surface node, so they never get
information on their absolute position. This can result in small
errors when measuring their heading and speed accumulating
over time, resulting in an increasing error as the mission
goes on. There are two possible ways to deal with this issue
without expensive hardware: the first, and simpler, one, is
off-mission recalibration: the mission is periodically paused,
allowing all AUVs to stop, then send several update messages
while moving in a pre-determined pattern. This allows the
leader to triangulate the followers’ positions and effectively
reset the state of the system without additional hardware,
but requires more time, as recalibrations can slow down the
mission. The second strategy, on-mission triangulation, has the
AUVs perform triangulation online by using more complex
communication topologies. Using a mesh-like topology instead
of a star, with communication between followers as well as
to the leader, would allow the leader to know the relative
distance between follower nodes, triangulating their position
and limiting the tracking error. In this work, we consider
off-mission recalibration, leaving on-mission triangulation as
future work.

III. SIMULATION SETTINGS

In this work, we simulate the SM and MM networks with
the multimodal DESERT Underwater protocol stack using
the WOSS framework [22], in order to model the acoustic
multipath with the Bellhop ray tracer. In all our simulations, a
swarm of 5 AUVs moves in an arrowhead formation, with the
leader located at the vertex of the arrow. The setup of the SM
network is: LF central frequency 25 kHz, bandwidth 5 kHz,
datarate 500 bps, and transmission power 175 dB re 1pPa.
The round-robin period required for obtaining both USBL data
and sensors information from ship and followers has been
set to 5.976 s. The MM network uses the same LF modem
configuration, and an HF modem with central frequency 50
kHz, bandwidth 25 kHz, datarate 195 bps, and transmission
power 156 dB re 1uPa [23].

In the SM-C configuration the LF data period to obtain
USBL data from the ship is 3.01 s, while the round-robin
period to obtain ranging and sensor data from the followers
via HF is 4.26 s for MM-C, and 4.59 s for MM-D. We assume
that positions can be quantized using 3 bytes and angles using
2 bytes: this results in a payload of 4 bytes from the followers
for the SM-C and MM-C cases (necessary to transmit z, 6 and
¢) and 6 bytes for the MM-D case (as the followers also need
to transmit = and y), with a header of 1 byte for each packet.
Both the leader and the followers implement a UKF exploiting
the Sigma Points parameterization given in [24] and using
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Fig. 2. Path of the Medium water scenario.

a=0.9, 8 =2 and xk = 10 as scaling parameters. As process
noise we consider Q = ¢I, where I is an identity matrix and
g = 0.01, while the precision of the system measurements is
reported in Table I.

We evaluate the performance of our system in two different
deployment scenarios, which are represented in Fig. 2 and
Fig. 3. The first is called Medium water scenario and emulates
the motion of an AUV fleet on a virtual path at a constant
speed of 1 m/s with the leader depth varying from 6 to 50
m. In this case, the distance between adjacent AUVs is 54
m: in particular, two followers are deployed 5 m deeper than
the leader, while the other two are deployed 10 m deeper
than the leader. In this case, packet loss is frequent for
communications with the surface node (close to 25%), around
10% for HF communications with followers, and below 1%
for LF ones. The Medium water scenario is characterized by
linear movements, which should improve the performance of
the tracking system, but also has the AUVs move over long
distances.

The second scenario considers the real motion of the CNR
INM Remotely Operated Vehicle (ROV) described in [25];
for simplicity, we name it ROV scenario. During the dive,
performed in Biograd Na Moru [26], [27], the ROV was
moving between a depth of 1 and 3 meters, at an average speed
of 0.2 m/s. In this scenario, the lower distance from the surface
vessel reduces the error probability, which is between 5% and
10% for all kinds of communications. Moreover, the distance
between adjacent AUVs is 6 m: in particular, two followers
are deployed 1 m deeper than the leader, while the other two
are deployed 2 m deeper than the leader. In contrast to the
Medium water scenario, the ROV scenario is characterized by

Measurement | Standard Deviation | Instrument
Depth 0.1 m Altimeter
Pitch 05° Inclinometer
Yaw 05° Magnetometer

Relative speed 0.2 % Doppler Effect

Relative distance 1 % Round Trip Time
Relative position 0.5 % USBL
Yaw, pitch 05° USBL
TABLE I

MEASUREMENT STANDARD DEVIATIONS.
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Fig. 3. Path of the ROV scenario.

a lower speed and many turns and changes in direction, as the
AUVs are exploring a restricted area.

In both scenarios, we assume that the leader knows the full
system state at the beginning of the mission. Moreover, we
assume that the AUVs stop the mission at regular intervals to
carry out a system recalibration. Such procedure involves a
packet exchange between all the system nodes, so that each
AUV can estimate its position by a triangulation process.
We call recalibration period T. the interval between two
consecutive triangulations. The value of 7. should be as large
as possible, since a temporary interruption of the mission may
negatively affect the AUV task. At the same time, a frequent
recalibration of the AUV positions allows the leader to reduce
the tracking error.

IV. RESULTS

The system performance is determined by the leader’s
tracking system, i.e., it coincides with the accuracy of the
leader’s estimate of its own and its followers’ positions. We
first consider the Medium water scenario with a simulation
period T;,, = 30 min and a recalibration period 7, = 20 min;
the obtained results are reported in Fig. 4 and Fig. 5. The first
figure shows the boxplot of the tracking error obtained during
the initial stages of the AUVs’ mission, while the latter shows
the boxplot of the tracking error obtained during the advanced
stages of the mission. In particular, we define the initial stage
as the first 5 minutes following a system recalibration and the
advanced stage as the 5 minute period that precedes a system
recalibration. In both figures, we distinguish the leader’s self-
positioning error from the error on the close followers and
on the far followers, where the close followers are the AUVs
moving in the proximity of the leader and the far followers are
the AUVs moving at the edges of the arrowhead formation.

We can observe that the self-positioning error remains below
2 m in both Fig. 4 and Fig. 5, as the leader is always able
to accurately track its own state thanks to the USBL system.
In the SM-C configuration, the leader uses the LF modem
with USBL to communicate with the followers as well as with
the surface node; consequently, the positioning error of both
the close and the far followers remains low across the whole
mission. In the multi-mode tracking systems, the positioning
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Fig. 5. Medium water scenario, advanced stages.

error increases for both the close and the far followers, as
MM-C and MM-D do not exploit the USBL system while
communicating with the followers. In this case, the position
of each AUV is estimated by the communication round trip
time, and the tracking performance deteriorates as that distance
increases. The main consequence of this is that the positioning
error on the far followers is greater than the positioning error
on the close followers. We observe that error propagation
steadily decreases the estimation accuracy for the followers
over time: the system performance in the initial stages are
much better in Fig. 4 than in Fig. 5.

In all stages of the mission, the SM—C configuration ensures
the best performance; however, as we discussed above, it is
also an order of magnitude more expensive, and the perfor-
mance difference does not justify the expense for applications
that do not require high localization precision. Focusing on
the other approaches, we observe that the MM—-D configuration
clearly outperforms the MM-C configuration. The additional
Kalman filters installed in the follower AUVs succeed in
improving the tracking accuracy despite the longer round
trip time due to the larger payload size. Considering a close
follower in an advanced stage of the mission, the MM-D system
ensures that the 75-th percentile of the positioning error is
about 5 m. Under the same conditions, the 75-th percentile of
the positioning error obtained with MM-C is about 9 m.

We now focus on the ROV scenario with a simulation
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period Ts;, = 30 min and a recalibration period 7T, = 20
min; the obtained results are reported in Fig. 6 and Fig. 7.
The SM-C system behaves like in the previous case: the
USBL communication allows the leader to accurately track
both itself and the followers in all the mission stages. For
the same reason, the leader self-positioning error is very
low with both MM-C and MM-D; however, if we take the
followers into account, the results are different. In both the
early stages of the mission, neither of the multi-mode network
configurations seems to clearly outperform the other: both
MM-C and MM-D ensure a tracking error below about 5 m.
Instead, in the mission late stages, the positioning error starts
to promptly increase, and MM-D leads to the best results. We
can explain this by better analyzing the ROV motion, which
is characterized by straight-line movements alternated with
sudden turns. This entails that, especially in the mission late
stages, it becomes more difficult for the tracking system to
estimate the follower positions.

At the beginning of the mission, all the AUVs do not move
far away from their starting positions. In this condition, the
tracking performance is not affected by the inaccuracy of
the local measurements of the followers; the MM-C system
performs slightly better, as the leader can receive updates
more often. In the advanced stages of the mission, followers
move away from their initial positions and the effects of local
measurement errors are more significant: as we can observe in
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Fig. 7, the MM-D approach becomes more convenient. Consid-
ering a close follower in an advanced stage of the mission the
75th percentile of the MM-D tracking error is 10 m lower than
the value obtained with the MM—-C configuration. Hence, the
MM-D network succeeds in keeping the tracking error below
10 m in both the Medium water and ROV scenarios, while the
MM~-C configuration leads to worse performance.

We conclude our analysis by evaluating the tracking perfor-
mance of the MM-D network for two different values of the
recalibration period T.; the obtained results are reported in
Fig. 8 (for the Medium water scenario) and Fig. 9 (for the
ROV scenario), respectively. In particular, we consider three
different recalibration schemes: the first exploits a recalibration
period of 10 minutes, the second exploits a recalibration
period of 20 minutes, while the latter does not carry out
any recalibration. As it is intuitive, the shortest recalibration
period ensures the best tracking performance, since the target
state is repeatedly reset. Conversely, in the configuration
without recalibration, the tracking error tends to increase as
the simulation goes on.

It is interesting to observe that in Fig. 8 the tracking
performance for 7, = oo is not strictly monotonic: the error
reaches its maximum after 20 minutes of simulation and
then starts decreasing. We can explain this by analyzing the
Medium water path represented in Fig. 2. After 20 minutes
of simulations, the AUV fleet is at the maximum depth and
the maximum distance from the ship, whose coordinates are
(0,0,0). In such a scenario, the packet loss probability increases
and, therefore, the tracking system updates its internal state
less frequently. When the AUVs move again towards the
ship, the communication conditions and the tracking accuracy
improve.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a low-cost cooperative
multi-mode tracking system for swarms of AUV that reduces
the cost of the communication equipment for the follower
nodes by an order of magnitude. If combined with low-
cost AUV models, the proposed system can be exploited
to make environmental monitoring operations economically
viable, solving the cost issue that has slowed the adoption of
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AUVs in this kind of application. While being less accurate
than the more expensive single mode system, our scheme can
still achieve an error below 5 m 20 minutes into the mission
considering a close follower AUV, and 13 m considering
a far follower AUV. A periodic recalibration of the system
target state allows to maintain such performance over a longer
period.

Future work on the subject includes the development of
more advanced communication schemes that can allow larger
swarms to maintain formation control with a very limited
number of USBL-equipped nodes, using both random access
and scheduled strategies. These advanced schemes would
remove the need for off-mission recalibration, using multiple
subsequent packet exchanges to triangulate the position of all
the involved nodes.

REFERENCES

[1] S. Phoha, E. M. Peluso, and R. L. Culver, “Autonomous underwater
vehicles (AUVs): Their past, present and future contributions to the
advancement of marine geoscience,” Elsevier Marine Geology, vol. 352,
no. 4, pp. 451-468, Jun. 2014.

[2] G. Ferri, A. Munafo, A. Tesei, P. Braca, F. Meyer, K. Pelekanakis,
R. Petroccia, J. Alves, C. Strode, and K. LePage, “Cooperative robotic
networks for underwater surveillance: an overview,” IEEE IET Radar,
Sonar & Navigation, vol. 11, no. 1, pp. 1740-1761, August 2017.

[3] “Kongsberg autonomous underwater vehicles,” Last time accessed:
Aug. 2020. [Online]. Available: https://www.kongsberg.com/maritime/
products/marine-robotics/autonomous-underwater- vehicles/

[4] “Kraken seavision,” Last time accessed: Aug. 2020. [Online]. Available:
https://krakenrobotics.com/products/seavision/

[5] “Kongsberg multibeam echo sounders,” Last time accessed:
Aug. 2020. [Online]. Available: https://www.kongsberg.com/maritime/
products/mapping-systems/mapping-systems/multibeam-echo-sounders/

[6] C. Moriconi, G. Cupertino, S. Betti, and M. Tabacchiera, “Hybrid acous-
tic/optic communications in underwater swarms,” in Proc. MTS/IEEE
OCEANS, Genova, Italy, May 2015.

[71 “SPARUS II AUV,” Last time accessed: Aug. 2020. [Online]. Available:
http://iquarobotics.com/sparus-ii-auv

[8] “ecoSUB AUV range,” Last time accessed: Aug. 2020. [Online].
Available: https://www.ecosub.uk/ecosubm5---500-m-rated-small-auv.
html

[9]1 A. Munafo, T. Furfaro, G. Ferri, and J. Alves, “Supporting AUV localisa-
tion through next generation underwater acoustic networks: results from
the field,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, Daejeon, Korea, Oct. 2016.

[10] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localiza-
tion: A review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131-149, Jan.
2014.



(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Y. Yao, “Cooperative navigation system for multiple unmanned under-
water vehicles,” in Proc. IFAC International Conference on Intelligent
Control, Chengdu, China, Sep. 2013.

B. Das, B. Subudhi, and B. B. Pati, “Employing nonlinear observer
for formation control of AUVs under communication constraints,”
International Journal of Intelligent Unmanned Systems, vol. 3, no. 2,
pp. 122-155, May 2015.

P. Millan, L. Orihuela, I. Jurado, and F. R. Rubio, “Formation Control of
Autonomous Underwater Vehicles Subject to Communication Delays,”
IEEE Transactions on Control Systems Technology, vol. 22, no. 2, pp.
770-777, March 2014.

Z.Hu, C. Ma, L. Zhang, A. Halme, T. Hayat, and B. Ahmad, “Formation
Control of Autonomous Underwater Vehicles Subject to Communication
Delays,” ELSEVIER Neurocomputing, vol. 147, no. 5, pp. 291-298,
January 2015.

M. Stojanovic, “On the relationship between capacity and distance in
an underwater acoustic communication channel,” ACM Mobile Comput.
and Commun. Review, vol. 11, no. 4, pp. 3443, Oct. 2007.
“EvoLogics Underwater Acoustic Modems,” Last time accessed:
Aug. 2020. [Online]. Available: https://evologics.de/acoustic-modems
“Develogic Subsea Systems,” Last time accessed: Aug. 2020. [Online].
Available: http://www.develogic.de/

“Teledyne-benthos acoustic modems,” accessed: March 2020. [Online].
Available: http://www.teledynemarine.com/acoustic-modems/

“WATER LINKED Modem M64,” Last time accessed: Aug. 2020.
[Online]. Available: https://waterlinked.com/product/modem-m64/
B.-C. Renner, J. Heitmann, and F. Steinmetz, “AHOI: Inexpensive, low-
power communication and localization for underwater sensor networks
and pAUVs,” ACM Transactions on Sensor Networks, vol. 16, no. 2,
pp. 251-273, Jan. 2020.

E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Sys-
tems for Signal Processing, Communications, and Control Symposium
(Cat. No. 00EX373). 1EEE, 2000, pp. 153-158.

F. Campagnaro, R. Francescon, F. Guerra, F. Favaro, P. Casari, R. Dia-
mant, and M. Zorzi, “The DESERT underwater framework v2: Improved
capabilities and extension tools,” in Proc. Ucomms, Lerici, Italy, Sep.
2016.

A. Signori, F. Campagnaro, F. Steinmetz, B.-C. Renner, and M. Zorzi,
“Data gathering from a multimodal dense underwater acoustic sensor
network deployed in shallow fresh water scenarios,” MDPI Journal of
Sensor and Actuator Networks, vol. 8, no. 4, Nov. 2019.

R. V. D. Merwe, “Sigma-point Kalman filters for probabilistic inference
in dynamic state-space models,” Ph.D. dissertation, OGI School of
Science & Engineering at OHSU, 2004.

A. Odetti, M. Bibuli, G. Bruzzone, M. Caccia, E. Spirandelli, and
G. Bruzzone, “e-URoPe: a reconfgurable AUV/ROV for man-robot un-
derwater cooperation,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 11203-
11208, 2017.

R. Ferretti, M. Bibuli, M. Caccia, D. Chiarella, A. Odetti, E. Zereik,
and G. Bruzzone, “Towards posidonia meadows detection, mapping
and automatic recognition using unmanned marine vehicles,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 12386-12391, 2017.

M. Bibuli, E. Zereik, G. Bruzzone, M. Caccia, R. Ferretti, and A. Odetti,
“Practical experience towards robust underwater navigation,” [FAC-
PapersOnLine, vol. 51, no. 29, pp. 281-286, 2018.



