
Communication Infrastructure and Cloud
Computing in Robotic Vessel as-a-Service

Application
Cosmin Delea], Emanuele Coccolo‡, Salvador Fernandez Covarrubias], Filippo Campagnaro‡, Federico Favaro‡,

Roberto Francescon?, Vincent Schneider], Johannes Oeffner], Michele Zorzi‡
‡ Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova, Italy,

] Fraunhofer Center for Maritime Logistics and Service, Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany,
? Wireless and More srl, Via della Croce Rossa 112, 35129 Padova, Italy

‡{coccoloe,campagn1,zorzi}@dei.unipd.it, fedefava86@gmail.com
]{cdelea,sfernandez,vfocke,johannes.oeffner}@cml.fraunhofer.de

?roberto.francescon@wirelessandmore.it

Abstract—The current trend in robotics is to enhance ro-
bustness against uncertainties through complex modern con-
trol methods, applied to either single- or multi-agent systems.
While indeed these approaches provide noticeable performance
improvements, their implementation requires, among others,
enclosed environments, where the operator has full access to
the control systems of the robot during execution. With constant
improvement of the Internet of Things, real-time systems needed
different software architectures and communication systems to
enable their remote operation, with the same degree of flexibility
when operating the systems in-situ. The paradigm shifted towards
cloud computing, which moved the computational effort needed
for various real-time processing algorithms on the server-sided
application and focused on having lightweight interfaces between
components, with the exception of the lower-level control loops,
which remained within the processing units of the robotic
systems. This paper describes the software architecture and
communication system for a state-of-the-art service to enable,
support and monitor different robotics applications. The case
study presents all features of a small-sized but scalable robotics
application, having multiple challenges when building a service
oriented platform: autonomous robots, over- and underwater
long-distance communication, sensor fusion and command and
control of multiple users. The goal is to create a centralised
cloud computing environment, with decentralised microservices
and redundant resources, supporting a plethora of port-specific
operations conducted with the help of waterborne robotics with
different equipment configurations, that can be remotely operated
and monitored in real time over cross-platform, lightweight
applications.

I. INTRODUCTION

A. Overall goal and concept

The usage of waterborne robotics for completing specific
tasks in port and coastal areas is gaining momentum, with
different levels of autonomy being accomplished by au-
tonomous surface and underwater vehicle (ASVs and AUVs).
Furthermore, service-oriented architecture (SOA) and cloud
computing are established infrastructure paradigms in the

This work has been partially supported by the Italian Ministry of Education,
Universities and Research (MIUR), the German Federal Ministry of Economy
(BMWi) and ERA-NET Cofund MarTERA (contract 728053).

development of software systems [1]. Even in the maritime
domain, frameworks such as the maritime connectivity plat-
form were established in order to allow fast efficient, secure,
reliable and seamless electronic information exchange between
authorised maritime stakeholders [2]. Maritime robotic solu-
tions require well established shore control systems which
can be implemented by means of a centralised data exchange
server allowing to set up modular testbeds with clients in
different locations [3]. By deliberately exposing only the
high-level control loops of the robotic system through per-
formant communication protocols, such as web sockets, the
environment for running the robotic application expands to
web applications, as proven in [4]. Moreover, as described
in [5] and in [6], a client-server architecture would focus
the computational workload and resources into microservices,
which can be supported on different computers (server) inside
the application’s network. This combined approach could
leverage the computational loads from robotics systems when
wanting to extend the software solution to accept multiple
users and remote operations, thereby promoting scalability.

The Robotic Vessels as-a-Service (RoboVaaS) project aims
at demonstrating innovative on-demand robotic aided services
via autonomous surface vehicles (ASVs) as well as remotely
operated underwater vehicles (ROVs). The novelty of the
RoboVaaS project [7] is in showing the feasibility of offering
various on-demand services in a port or coastal environment.
Therefore, a profound framework was set up that allows
reliable data transfer between above- and underwater entities,
a shore based monitoring station and a real-time web-based
user interface. Specifically, the project aims to exploit the
most innovative communication technologies and waterborne
robotics to improve shipping operations, offering on-demand
and robotic-aided services. To enhance harbour activities,
robotic vessels with different levels of autonomy will assist
and complete various on-demand services. These services are
usually performed by human operators or are not available
at all times and require significant resources, such as time,
money and availability. Within RoboVaaS five use-cases were



RoboVaaS
Cloud

Fig. 1. RoboVaaS envisioned example scenario showing ship-hull inspection,
anti-grounding and data collection services enabled through a fleet of ASVs
and ROVs connected with acoustic underwater and wireless communication.

identified that are expected to have a high potential: inspection
services of quay-walls (1) and ship hulls (2), a newly designed
anti-grounding service (3), bathymetry data collection (4) and
environmental data collection (5). The RoboVaaS project, as
depicted in Figure 1, envisions a fleet of heterogeneous robotic
nodes, each permanently connected to an onshore station via
over- and underwater communication links and capable of
completing a plethora of port-specific operations.

An envisioned user of the RoboVaaS system (such as a
ship owner, a navigator or a port authority) can use one
of the aforementioned on-demand services by placing spe-
cific requests and follow their progress through a standard
web browser. Once the service request is issued, the service
provider will assign the request in the form of a task or mission
to a single or several available Autonomous Surface Vehicles
(ASVs) or Remotely Operated Vehicles (ROVs), commanded
and supervised by a shore-based control centre. During a
mission, its progress and the acquired data are transmitted in
real time or - in some cases - after post-processing, to the
users. Once the mission is completed, the results of the service
can be recalled by the user at any point in time, in order to
visualise them through a web browser or to generate a report,
based on the acquired data. This report contains different types
of information depending on the service: a report of a quay
wall inspection service will present the status and pictures of
the quay wall along with coordinates of the most damaged
areas. A ship hull inspection can provide information on the
fouling status of the ship hull. It could alert the user if a
specific area requires service due to unwanted marine growth
or damage as well as provide the valuable information that hull
cleaning is not yet required. In the data collection services, the
entities would perform a cost-efficient autonomous survey of
waterways. The processed bathymetry and/or environmental
sensor data collected during the mission could be reviewed in
the user portal. The anti-grounding service, described in [8],
will provide real-time multi-beam echo-sounder data directly
to the end-user. In this service, an ASV travelling ahead of
a merchant vessel collects and sends bathymetry data in real
time, which is subsequently used to display areas of danger
due to insufficient water depth while considering the specific

Fig. 2. RoboVaaS environmental data collection scenario: an AUV collects
data from static underwater sensor nodes, and forwards the data to the surface
vehicle connected to shore via WiFi.

draught of the trailing vessel. The distance and hence the lead
time of the ASV depends on parameters such as minimum
stopping distance of the merchant vessel.

This paper will describe in depth the system architecture,
together with the communication interfaces and protocols used
by the major subsystems, but will use the environmental
data collection use-case to specifically describe the complete
information workflow. In this scenario, we use the underwater
polling protocol to gather underwater sensor information from
floating buoys and transmit it to the shore station, where it can
be visualised on the web user interface. This scenario will be
a solid and sufficient basis for extending the overall concept
to the other envisioned services. The aforementioned scenario
is depicted in Fig 2.

B. Past projects and related works

Using as-a-service concepts for ports and coastal areas is
a new trend offering a certain service on demand without
the need to purchase the whole product entities involved.
The Hamburg Port Authority and the Fraunhofer CML for
example drafted a vision of “interconnected smart ports,”
which includes such services for port areas [9]. Currently,
the Digital Ocean Lab (DOL), a core project of the large-
scale project Ocean Technology Campus Rostock, will set up
an undersea site for testing ideas and simulations under con-
trolled conditions in a real-world environment, where efficient
connection of different robotic entities will be demonstrated
[10]. Combining unmanned systems for joint operations have
been investigated in MORUS [11] by combining AUVs and
unmanned aerial vehicles for security and environmental mon-
itoring or in SWARMS [12] by combining AUVs, ROVs and
ASVs to facilitate offshore operations.

The concept of robotics delivering services and being com-
manded through a web interface has been investigated in [13],
the use-case being computer science education. With the aim
of extending the tools provided by Robot Operating System-
(ROS) compliant robotics, the Robot Web Tools project [6]
created an open-source framework for communicating with
such systems over web sockets, using rosbridge servers.
With a robotics competition as use-case, another Robots-as-
a-Service (RaaS) system has been developed in [14], which
proposes web-based virtual machines for clients interacting
with various ROS tools. Its successful implementation has led



to the development of ROS Developent Studio [15], which
offers on-demand ROS tools, such as Gazebo Simulator, for
users, with the computational workload left on the server-
side application. As in the current work, the end-user requires
only a web browser to access the whole array of services
offered by the service provider. In [16], the concept of cloud
robotics is extended to service robots, that assist the elderly
and the disabled with daily activities, with the added benefit
that the robots are permanently connected to the cloud, where
developers can deliver their updates and operators can monitor
and maintain them. The main differences from the past projects
are the use-cases that are closely related to port-specific
operations and the focus on waterborne robotics. Moreover,
except for the anti-grounding use-case, all other services have
been tested using both simulations and real testbeds.

C. Structure of the paper
The rest of the paper is organised as follows: In Section II

we describe the system architecture, and how the RoboVaaS
applications are managed. In Section III we present the details
of the underwater and the above water network that enables
the connectivity between all the RoboVaaS components. Sec-
tion IV presents the results obtained with some preliminary
tests performed with the whole system, and, finally, Section V
concludes the paper.

II. SYSTEM ARCHITECTURE

A. Overall system, main actors and their interfaces
The overall system architecture, depicted in Figure 3, can

be broken down into two main components: Shore System
and Robotic System. The first entity hosts a web-based
application, mainly served for all registered users having
access to the RoboVaaS system with the content set by the
Shore System considering the user roles. The Shore System
is a collection of servers and client applications with different
purposes, that enable a two-way communication channel with
the Robotic System. The Client Web Interface is the actual
web user interface from where different port-specific requests
can be initiated, administered and supervised without the need
for the users to be present, in the area where the port-specific
service takes place. The Shore Operations Centre is another
component of the Shore System and is the actor directly
giving the higher level commands to the Robotic System.
This link has the topmost priority in terms of communication
and serves as an access point for the professional human
intervention required, when operating the RoboVaaS system.
Additionally, it can be coupled with a digital twin of the overall
system, in order to perform a large-scale simulation. Lastly,
the Robotic System represents the set of heterogeneous robots
along with their interfaces to interact with the aforementioned
actors.

B. Application management (users, live data management,
data flow)

Within the RoboVaaS network, there are five users that
can access the web application, each having different sets of
permissions:

• client (or user): can place requests and visualise real-time
data belonging to him/her.

• robotic vessel (or robot): can be mounted and commanded
by the operator and emits real-time data.

• operator: can take up a job, select a robot to command
and consume real-time data from the selected robot.

• system broker: can assign requests to an operator in form
of a job.

• administrator: can modify roles and apps available for
each user type.

Real-time information is handled through the RabbitMQ
Broker (Cloud), which is capable of handling various messag-
ing protocols, such as AMQP, MQTT or STOMP [17]. Each
subsystem will have its own exchanges, which will enable
the flow of information between actors. Moreover, during run-
time they will be able to subscribe with their own queues to
the exchanges of the other subsystems. Their rights will be
granted by the Back Server, which can verify their identity
and validate their requests. Multimedia data will be routed
by the Video-Streaming Server, which collects multimedia
packets sent over from the Robotic System and routes them
to the web browser clients. Additionally, it will compress,
decompress and transcode the video packets if clients cannot
read the format encoded by the cameras by default. The main
entities and their interfaces are depicted in Fig 4.

C. Software pipeline of the overall system

Each user will register and authenticate through a standalone
application or through the browser-based client, which will
send a request to the central Back Server, having exclusive
reading and writing access to the Database. The request is
executed by using a RESTful API. Once authenticated, the
user will receive a unique user identification number (userID).
The userID will be stored together with the credentials into
the Jobs table and will be used whenever the user wants to
access stored data. All data is first filtered out by userID,
in order to prevent information disclosure. The connection
between the back-end server and the source of the messages
(i.e., robotic systems) is managed by a unique user with
administration rights, called System Broker. The latter will
match all incoming mission requests with an available robotic
system (i.e. USV) and an Operator. The Realtime-Data
Server will use this input to enable a communication channel
between them, by either forwarding the messages to each
other, or sending the channel details to the parties’ back-ends.
Once the mission is requested by the user, it will receive a
unique job identification number (jobID), also known by the
robotic system and the Operator, which will be used in turn
to sign the generated data.

By decoupling the overall system in a series of decentralised
microservices, with a common node for user authentication
and data allocation, the system is capable of escalating to
handle multiple users, missions and even applications. Once
the user is registered into the overall system, all related
information will be handled on a unique path, managed by
the System Broker(s). The user can request multiple missions,



Fig. 3. RoboVaaS System Architecture

Fig. 4. Service Layout

each being identified by a unique jobID and linked to its
respective userID. In this way, the closed missions can be
analysed by the user that requested them or by the one
having the rights to view the data. Using the exact same
pipeline, further applications requiring on-demand services,
performed by robotic nodes at different autonomy levels, can
be envisioned.

III. COMMUNICATION NETWORK

This section presents the different parts of the telecommu-
nication pipeline from the actual sensor nodes to the server.
The complete pipeline can be divided in two main sections,
specifically:

1) the underwater section that uses acoustic telecommuni-
cation technologies;

2) the above water section, that uses Ethernet, long range
wireless antennas and connection to the cellular network.

Since the two technologies have different characteristics in
terms of performance and functioning, we implemented the

sections with distinct protocols to optimise the communica-
tions.

The underwater network (presented in Section III-A) uses
very low-cost and low-power acoustic modem, the smartPORT
Acoustic Underwater Modem (AHOI), while the above water
network (described in Section III-B), is composed by 802.11
WiFi and Ethernet technologies manufactured by Mikrotik,
plus an LTE antenna to interface the network with the Internet.

A. Underwater communication network

As previously mentioned, in the underwater section the
transmissions use the acoustic water channel, since it allows
to communicate wirelessly, where the usual electromagnetic
waves suffer severe attenuation, at the cost of low transmission
bitrates and large propagation delay.

The concept followed for this architecture is the data muling
approach, that consists in having one or more nodes which
travel in the area where the network is deployed and trigger
the transmissions between all the nodes. In particular, there
are two types of nodes: one category includes the sensor nodes
which generate the data from environmental sensors and the
other one is the central node, that gathers the data generated
by the nodes.

The data muling approach has several advantages in a
network where the nodes are deployed in clusters or the
transmission range is short, so a multi-hop network should
be implemented. In the case of RoboVaas, nodes are expected
to be deployed in areas of interest inside ports and harbours,
possibly appearing in clusters due to physical obstacles in the
communication range, and the data collection is done with one
device that collects all the data packets from the sensor nodes
and later interfaces with the Shore System through the above
water communication network.

The network management and the protocol functioning
are performed in the DESERT Underwater Framework [18],



which is a network simulator based on ns2 with the option
of running with a real-time scheduler [19]. This enables the
protocols implemented for simulations to be used in full-scale
applications in real life scenarios.

For the present scenario, a MAC protocol [20] has been
developed with a polling policy, where a central node coor-
dinates the communications from the sensor nodes avoiding
overlapping and packet collisions. In particular, the protocol
presents two main phases: the first is a discovery phase,
where the central node (an ASV) sends a TRIGGER packet,
expecting the sensor nodes within transmission range to reply
with the number of packets that every single sensor has to
upload; then the second phase includes the creation of a
priority list, by the central node, for the sensor nodes. The
order of the nodes in the list is based on the number of packets
that has already been sent by every node in previous polls and
those expected for the current cycle, and then the central node
polls each node following this list. The cycle terminates when
all the nodes in the list have sent their packets or the back-off
time for the second phase expires.

Moreover, the packets exchanged in the underwater network
have to be as small as possible to overcome the challenges
introduced by the water as a medium. Indeed, the high bit
error rate, and the low bitrate of the acoustic modems allow
the successful transmission of only packets with a limited
overall length, therefore we introduced a known format at
the application layer for the data to be transmitted, so that
the basic information is contained in a string Sx with a low
number of characters. The first two values are reserved for
the node ID, the subsequent six contain the timestamp in the
format HHmmss, then one character indicates the data type
and all the remaining characters until the end are the actual
value. With this general format, the packet length can be kept
under 32 bytes, including the header introduced by DESERT.

Furthermore, the packets are retrieved at the application
layer by another program that translates the string Sx into
a JSON file. Indeed, in the DESERT Framework at the
application layer there is the option of using a module called
uwApplication, which opens a local socket connection avail-
able for whichever program external to DESERT. This allows
the implementation of programs that manage or create buffers
of characters, which DESERT encapsulates by following the
user-defined protocol stack. The packets can be later retrieved
at the end of the communication through another socket
connection. Thus, the second program we introduced has the
main objective of translating the basic information contained
in the string Sx into a format that is compatible with the Shore
System.

Once the file has been created, it is stored in a specific
folder where another program, an AMQP client, scans for new
files and publishes their content in the RabbitMQ server. This
approach of transmitting information through files between
different applications is useful in case of crash of the AMQP
client, or in case of a missing link in the above water network.

Regarding the equipment used for this application, all the
software is lightweight and can be run on Single Board Com-

puters (SBC), like Raspberry Pi or ASUS Tinkerboard, the
only requirement in terms of software being a Debian-based
Operating System installed on the board. The underwater
transmissions are performed with the AHOI modems [21],
which operate in a high frequency band (50-75 kHz) with
a nominal data rate of 2.35 kb/s. The maximum payload
available for this modems is 96 bytes, but to limit as much as
possible the packet error rate caused by the errors introduced
by the underwater channel, we decided to keep the maximum
payload usable in DESERT to 32 bytes.

B. Above water communication network

The above water section of the network have been de-
signed and implemented using equipment manufactured by
Mikrotik [22], which provides a vast variety of reliable,
powerful and cost-effective network devices. All Mikrotik
devices run the RouterOS operating system, which provides
an easy-to-use, yet powerful configuration interface, able to
exploit any ISO/OSI Layer 2 and Layer 3 technologies, such as
Ethernet Bridging, 802.1Q VLANs, static and dynamic routing
and DHCP. On WiFi capable devices, WiFi parameters such
as SSID, ACLs, WPA2 and some physical layer parameters
can be easily configured. Moreover, on the AP/Base Station
side, an ACL based on clients’ MAC address can be set up,
in order to add another layer of security over the WPA2
protocol. If a back-haul is needed with internet connection,
several Mikrotik devices can mount an LTE/UMTS modem
with usim slot. Moreover, RouterOS provides basic firewall
capabilities, in order to prevent unauthorised access. For
remote users to access securely and privately, a VPN can
be configured. Several VPN protocols, such as OpenVPN,
L2TP, PPTP are natively supported. Hereafter, we describe the
network topology designed and implemented for the above
water section. On the ASV, a Mikrotik Metal 52AC WiFi
CPE [23] has been adopted. The Metal 52AC device is a
full-fledged router, mounting a Gigabit Ethernet port, a WiFi
802.11b/g/n and 802.11ac compliant WiFi radio (configured
to act as a CPE client) and a 6 dBi omnidirectional antenna.
On the piers, we adopted mANTBox 12s as the WiFi AP [24],
which mounts a 12 dBi 120 degrees directional antenna and
a 802.11b/g/n WiFi modem, able to cover long distances and
challenging radio channels. We adopted a 5 Ethernet ports
Mikrotik hEX [25] as the core router, which connects the
mANTBox, the RabbitMQ servers and optionally laptops for
troubleshooting and monitoring. If an internet connection or
inbound remote connection is needed via a back-haul link, a
wAP R LTE Mikrotik device, mounting an LTE modem and
a Gigabit Ethernet port can be connected to the hEX [26].
For what concerns IP connectivity, the network has been
designed in order to have a single LAN from the ASV to
the RabbitMQ server. Mikrotik hEX will act as a core router
providing a DHCP server for any client that is allowed to
connect. IP Addressing of the LAN will be on a single CIDR
with a /24 subnet. This way, we will be able to have a
full layer 2 connectivity between any client connected (both
on Ethernet and WiFi) without any static routing usage. For



remote inbound connection, hEX provides some basic firewall
rules and operator authentication and authorisation. A visual
scheme of the network just described can be seen in Fig. 5

wAP-R hEX mANTBox

shore station

192.168.66.1

192.168.66.2

LTE

ASV

TinkerBoard

Metal 52AC

192.168.66.5 -
 - 192.168.66.50

Fig. 5. Above Water Network scheme

IV. RESULTS

Following the intended usage of the application, the reg-
istered end-user generates a request on the web user in-
terface and awaits its assignation to an operator from the
system broker. Once the operator books an available ASV
and confirms the job request, the end-user will receive all
the required updates on the web user interface. The operator
gives the path the ASV needs to follow and manages possible
hazards, such as incoming vessel traffic, unexpected obstacles
or events, such as sudden changes in the water depth that can
potentially ground the ASV, or component changes in the ASV,
such as sensing equipment or battery swapping. During the
entire operation, it is assumed that the corresponding sensory
equipment is correctly fitted on the ASVs and/or ROVs. When
the goal of the task given by the end-user is considered to be
fulfilled, the operator marks the event closure, which reverts
the statuses of both the operator and the ASV to “available”
in order for new tasks to be assigned to them.

By following the above described procedure, a method to
manage port-specific operations with waterborne robotics is
established. By making use of the microservices, multiple
tasks run independently of each other and at the same time,
and all actors involved in the operations are informed in real
time. Due to the nature of SOA, the server-side infrastructure
and services require more work for deployment, but once
finalised, clients can gain access to the several end-points of
the overall system with very little effort. Moreover, as shown in
Figure 6, the service client, or end-user, can reanalyse the data
obtained for a specific job also, subsequently, after finalisation.
In this figure, the path followed by ASV during the mission is
represented by the grey line, while the green points mark the
positions of the ASV at the moment when a packet is received
by the central node and forwarded to the server.

The data collected from a sensor node and acquired with
the RoboVaaS network can then be retrieved, visualised and
further processed by the user on the web interface, as depicted
in Figure 7.

A. Performance and limitations

In terms of above water communication, the proposed
system was capable of delivering the packets between the

Fig. 6. Environmental Data Collection: Mission details page on web UI

Fig. 7. Environmental Data Collection: data summary for a sensor node on
web UI

Robotic System and the Shore System in real time. By
using 1x Miktrotik Metal 52AC on-board the ASV and having
1x Miktrotik mANTBox 12s installed on the piers, creating
a mesh network with 1x Miktrotik wAP R LTE acting as
the central hub, excellent results have been obtained. The
performance indicators are summarised in Table I.

TABLE I
COMMUNICATION SYSTEM LIMITS (*TESTS WITHIN INTERNAL

NETWORK)

Distance
[m]

Area
Info

Packet loss
[%]

Latency
[ms]

427 some trees and above water 0 2.5
533 some trees and above water 16 13
565 several trees and above water 100 -

The results prove the effectiveness of the system in a
confined space with a ≤ 500 m radius. Considering the safety
requirements of port areas, which generally require Line-Of-
Sight operations, and the scope of the RoboVaaS application,
this limitation is relevant only for the anti-grounding scenario,
where larger areas need to be covered. Even there, the oper-
ational range can be extended using multiple wireless access
points mounted around the harbour and connected together.

The overall system is capable of handling multiple users
with different roles at the same time, the only user limitation is
the possibility to perform multiple jobs with the same robotic
system. In that sense, the number of channels opened for



handling live data is limited to the number of ASVs in the
port fleet that can be operated at a time.

Secondly, in the environmental data collection use-case,
the infrastructure permits underwater communication only for
ASVs carrying an underwater communication node that can
operate on the frequency of the buoys.

B. Benefits (and drawbacks) of the service

The proposed system not only satisfies its scientific purpose
of building a robust solution for performing above- and un-
derwater port-specific operations using waterborne robots, but
also leads the way to a market-ready product, with a coherent,
resilient, scalable and state-of-the-art system architecture.

Due to its complexity, each connection between the de-
scribed subsystems must be tested individually. Gradually,
more actors can be involved, up to the point where the overall
system is successfully tested in a controlled environment, such
as an internal network and/or using the digital twin simulating
the ASV.

Secondly, each operation needs highly skilled personnel,
i.e., an operator, that can correctly operate, monitor and
maintain the unmanned vehicles. In that sense, the proposed
application does not face the difficulty of operating robotics,
but focuses on distributing some of the tasks to potential
customers, working alongside specialists.

V. CONCLUSIONS AND FURTHER WORKS

The overall system was developed within the RoboVaaS
Project and used for showcasing the envisioned port-specific
on-demand services performed by waterborne robotics with
a high level of autonomy, commanded by skilled personnel
and demanded by maritime stakeholders. The ambition was to
validate the concept using real small-scale demonstrations of
three individual use-cases: bathymetry and environmental data
collection and quay-wall inspection. The presented layout had
to be modular and flexible to the change of equipment needed
for each use-case. This meant having a modular design of the
hardware and software components on-board the ASV and
having a scalable server and communication infrastructure.
The overall system will be demonstrated to the public in a
specially designated test area in the Port of Hamburg. The
aforementioned use-cases will be performed using an in-house
developed ASV and a commercial ROV. For each use-case,
specific sensing equipment will be mounted on the ASV, the
buoys will be deployed on-site and the users will be instructed
to use the web interface to request one of the services.

The proposed system architecture and communication in-
frastructure will be extended and adapted to further projects,
such as [27], which will benefit from the added value of
the proposed scheme and further test its capabilities against
medium-sized industrial robotics.

REFERENCES

[1] Y. Chen, Z. Du, and M. Garcı́a-Acosta, “Robot as a service in cloud
computing,” in 2010 Fifth IEEE International Symposium on Service
Oriented System Engineering. IEEE, 2010, pp. 151–158.

[2] The Maritime Cloud Development Forum, “Maritime cloud conceptual
model,” in IALA ENAV19 Committee meeting, St Germain en Laye,
France, September 2016.

[3] J. Oeffner, S. Shetty, and H.-C. Burmeister, “A modular testbed using
centralised data exchange for autonomous navigation systems,” Interna-
tional Symposium on Integrated Ship’s Information Systems Maritime
Traffic Engineering Conference, 2016.

[4] J. Lee, “Web applications for robots using rosbridge,” Brown University,
Providence, RI, USA, 2012.

[5] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins, “Ros and rosbridge:
Roboticists out of the loop,” in 7th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). IEEE, 2012, pp. 493–494.

[6] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski,
M. Wills, and S. Chernova, “Robot web tools: Efficient messaging
for cloud robotics,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 4530–4537.

[7] “Robotic vessels as-a-service,” Last time accessed: Aug. 2020. [Online].
Available: https://www.martera.eu/projects/robovaas

[8] D. Zordan, F. Campagnaro, and M. Zorzi, “On the feasibility of an anti-
grounding service with autonomous surface vessels,” in Proc. MTS/IEEE
Oceans, Marseille, France, June 2019.

[9] C. Jahn and S. Saxe, “Digitalization of seaports-visions of the future,”
Fraunhofer Center for Maritime Logistics and Services (CML), 2017.

[10] “Ocean technology campus rostock,” https://www.igd.fraunhofer.de/en/
projects/ocean-technology-campus-rostock, accessed: 2020-08-28.

[11] T. Haus, M. Orsag, and S. Bogdan, “Mathematical modelling and control
of an unmanned aerial vehicle with moving mass control concept,”
Journal of Intelligent & Robotic Systems, vol. 88, no. 2-4, pp. 219–246,
2017.

[12] “Smart and networking underwater robots in cooperation meshes,” http:
//swarms.eu/approach.html#technicalapproach., accessed: 2020-08-28.

[13] Y. Chen and H. Hu, “Internet of intelligent things and robot as a service,”
Simulation Modelling Practice and Theory, vol. 34, pp. 159–171, 2013.

[14] E. Cervera, G. Casañ, and R. Tellez, “Cloud simulations for robocup,”
in Robot World Cup. Springer, 2017, pp. 180–189.

[15] “Robot ignite academy,” Last time accessed: Aug. 2020. [On-
line]. Available: https://www.theconstructsim.com/robotigniteacademy
learnros/ros-courses-library/

[16] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud networked
robotics,” IEEE Network, vol. 26, no. 3, pp. 28–34, 2012.

[17] “Advanced message queuing protocol,” Last time accessed: Aug. 2020.
[Online]. Available: https://en.wikipedia.org/wiki/Advanced Message
Queuing Protocol

[18] R. Masiero, S. Azad, F. Favaro, M. Petrani, G. Toso, F. Guerra, P. Casari,
and M. Zorzi, “DESERT Underwater: An NS-Miracle-based framework
to design, simulate, emulate and realize test-beds for underwater network
protocols,” in Proc. MTS/IEEE Oceans, Yeosu, Republic of Korea, Aug.
2012.

[19] F. Campagnaro, R. Francescon, F. Guerra, F. Favaro, P. Casari, R. Dia-
mant, and M. Zorzi, “The DESERT underwater framework v2: Improved
capabilities and extension tools,” in Proc. Ucomms, Lerici, Italy, Sep.
2016.

[20] A. Signori, F. Campagnaro, F. Steinmetz, B.-C. Renner, and M. Zorzi,
“Data gathering from a multimodal dense underwater acoustic sensor
network deployed in shallow fresh water scenarios,” MDPI Journal of
Sensor and Actuator Networks, vol. 8, no. 4, p. 55, 2019.

[21] B.-C. Renner, J. Heitmann, and F. Steinmetz, “AHOI: Inexpensive,
Low-power Communication and Localization for Underwater Sensor
Networks and micro-AUVs,” ACM Transactions on Sensor Networks
(TOSN), vol. 16, pp. 1–46, 01 2020.

[22] “Mikrotik,” accessed: Aug. 2020. [Online]. Available: https://mikrotik.
com/

[23] “Mikrotik Metal 52AC,” accessed: Aug. 2020. [Online]. Available:
https://mikrotik.com/product/RBMetalG-52SHPacn

[24] “Mikrotik mANTBox,” accessed: Aug. 2020. [Online]. Available:
https://mikrotik.com/product/mantbox 2 12s

[25] Accessed: Aug. 2020. [Online]. Available: https://mikrotik.com/product/
RB750Gr3

[26] “Mikrotik wAP R,” accessed: Aug. 2020. [Online]. Available:
https://mikrotik.com/product/RBwAPR-2nD

[27] “The seaclear project,” Last time accessed: Aug. 2020. [Online].
Available: https://seaclear-project.eu/


