
On the Use of Conversation Detection to Improve
the Security of Underwater Acoustic Networks

Alberto Signori‡, Filippo Campagnaro‡, Kim-Fabian Wachlin], Ivor Nissen∗], Michele Zorzi‡
‡ Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova, Italy

and Wireless and More, s.r.l., via della Croce Rossa 112, 35129 Padova, Italy
] Department of Computer Science, Kiel University, Hermann-Rodewald-Straße 3, 24118 Kiel, Germany,
∗ Bundeswehr Technical Center for Ships and Naval Weapons Maritime Technology and Research,

Klausdorfer Weg 2–24, 24118 Kiel, Germany,
‡{signoria,campagn1,zorzi}@dei.unipd.it,

]kfw@informatik.uni-kiel.de,
∗ivornissen@bundeswehr.org

Abstract—Security is one of the key aspects of underwater
acoustic networks, due to the critical importance of the scenarios
in which these networks can be employed. For example, attacks
performed to military underwater networks or to assets deployed
for tsunami prevention can lead to disastrous consequences.
Nevertheless, countermeasures to possible network attacks have
not been widely investigated so far. One way to identify possible
attackers is by using reputation, where a node gains trust each
time it exhibits a good behavior, and loses trust each time it
behaves in a suspicious way. The first step for analyzing if
a node is behaving in a good way is to inspect the network
traffic, by detecting all conversations. This paper proposes both
centralized and decentralized algorithms for performing this
operation, either from the network or from the node perspective.
While the former can be applied only in post processing, the latter
can also be used in real time by each node, and so can be used
for creating the trust value. To evaluate the algorithms, we used
real experimental data acquired during the EDA RACUN project
(Robust Underwater Communication in Underwater Networks).

I. INTRODUCTION AND RELATED WORKS

Security aspects in underwater wireless networks have not
been widely investigated so far, despite the critical importance
of the scenarios in which these networks can be employed [1],
[2]. For example, an attack to a military underwater network
for enemy targeting or identification can lead to serious
consequences. Similarly, Mine Countermeasure (MCM) mis-
sions performed by Autonomous Underwater Vehicles (AUVs)
coordinated through an acoustic network are also critical
from a public safety point of view. In addition, underwater
networks can be used for environmental monitoring, such as
monitoring for tsunami risk mitigation [3], where an attack
and a consequent network failure could become dangerous for
human life.

One of the possible ways to identify a malicious node that
tries to perform a Denial Of Service (DoS) attack, such as
jamming [4], [5] or resource exhaustion [6], is by analyzing
the traffic in the network, to isolate nodes with a suspicious

This work has been supported by the Bundeswehr Technical Center
for Ships and Naval Wepons, Maritime Technology and Reseach, GF 630
Underwater Communication, contract 728053 - E/E71S/K1291CF081

behavior. To isolate a node that deviates from a natural behav-
ior, i.e., from following the protocol rules, a trustworthiness
index can be used, based on the reputation of the node [7],
[8]. Ideally, each action that deviates from the protocol rules
causes a decrease in the node’s reputation, and conversely the
reputation of a node acting as expected should increase. In this
work, we define reputation as the opinion that the nodes of the
network have about a specific node, based on its past behavior,
and we define trust as the belief that a node is safe and reliable,
i.e., it behaves according to the network protocol rules, without
trying to attack the network. In terrestrial networks the basic
element of each trust mechanism is the so called watchdog
system [9], i.e., the capability of a node to overhear packets
transmitted by its neighbors by exploiting the broadcast nature
of the channel. The information carried by the overheard
packets can then be used to understand whether or not a node is
acting properly. In the underwater environment this operation
becomes more difficult due to high variability of the channel
conditions [10], that can lead the channel to be in a bad state
for a long time, making it more difficult to detect packets from
neighbors.

In order to detect whether a node is behaving according
to the network protocols, it is essential to first identify all the
conversations in the network, and then classify the traffic types
of those conversations, by observing the packets transmitted
in the network. In this paper we refer to a conversation as
a communication exchange between two or more nodes with
the aim of conveying the data of a certain application. In this
view, two nodes can establish multiple conversations with each
other simultaneously. For instance, if node A requires a status
update from node B while node B is transmitting to A the value
acquired with a temperature sensor every T1 seconds, and A
is transmitting to node B data acquired by a sonar every T2

seconds, we account for three separate conversations, namely
a request-reply (REQ/REP) and two periodic applications with
period T1 and T2, respectively.

Conversations identification and traffic classification opera-
tions can be performed either with a global networking view
(centralized solution), by observing the packets transmitted by



Fig. 1. Typical underwater network scenario composed by static nodes, an
underwater vehicle and a surface vehicle. Nodes communicate with acoustic
waves

all nodes, or distributedly, where each node tries to identify
the conversations on its own, using only the locally observed
packets. While the former approach leads to better results,
the latter is more realistic to be implemented in a real-time
application, because it does not require full knowledge of all
packets transmitted by each node. Still the former solution is
of interest, both as a benchmark for the latter approach and to
best identify any misbehavior in post processing.

In this paper we analyze and compare both centralized and
distributed solutions for conversation identification and traffic
analysis in an underwater acoustic network scenario with both
mobile and static nodes (Figure 1), and discuss how to apply
them in a reputation system used to identify possible attackers
in an underwater network. In addition, we assess the accuracy
of the conversation detection in a decentralized way when it is
performed in a real-time scenario. It is important to understand
how accurate the detection is in real time, when some of the
packets belonging to the same conversation may not yet have
been received. Indeed, a sufficiently accurate detection should
allow the assessment of the reputation of the nodes during the
mission, and not only at the end of it.

These solutions will be evaluated through a real field dataset
acquired during the RACUN project [11], [12]. This dataset
has been obtained through the use of the DESERT Underwater
Framework [13] integrated with the Gossiping in Underwater
Acoustic Mobile Ad-hoc Networks (GUWMANET) protocol
and the Generic Underwater Application Language (GUWAL)
application layer [14].

This paper is organized as follows. Section II describes
the network deployment scenario and the RACUN dataset.
Section III presents both the centralized and the distributed
conversations detection algorithms, and discusses the use of
the latter for a real-time conversation detection. Section IV
presents the evaluation of the distributed algorithms compared
to the centralized ones, and, finally, Section V draws conclud-
ing remarks.

II. SCENARIO AND PROTOCOL DESCRIPTION

The underwater network analyzed in this paper is depicted
in Figure 2: the deployment is composed by two ships, one
AUV, one gateway buoy, 8 bottom nodes (depicted in yellow)
and two bottom receivers (depicted in red). The distance
between two adjacent nodes ranges from 600 m to 2.5 km.
All nodes were operating in the RACUN frequency band of
4-8 kHz. The maximum range experienced during the sea trial
was 4 km. The ship FS Planet (GS1), the gateway buoy (GG1),

gateway
node
AUV

ship

GB5

GB6

GB9

GA1

GS1
GG1

SB2 SB1

NB4

SS2

GB7

NB3

NR2
NR1

Fig. 2. The network tested during the RACUN project. The test has been
performed in near La Spezia, in May 2014.

the AUV (GA1) and four bottom nodes (GB5, GB6, GB7 and
GB9) were provided by Germany, two bottom nodes (SB1
and SB2), as well as the network node deployed from the
Italian ship Tavolara (SS2), were provided by Sweden, while
the remaining two bottom nodes (NB3 and NB4) and the two
bottom receivers (NR1 and NR2) were provided by Norway.
The ships, the gateway buoy, the German bottom nodes and
the AUV were equipped with Develogic acoustic modems, the
Swedish nodes with SAAB modems and, finally, the Norwe-
gian nodes were equipped with NILUS units. The experiment
was launched directly with GUWMANET in the German bot-
tom nodes, and with the DESERT Underwater framework [13]
in all other nodes. In this scenario, all nodes employed the
GUWAL application layer and the GUWMANET protocol.
More details on the deployment and on the nodes setup can
be found in [15].

A. GUWAL and GUWMANET

GUWAL is an application layer specifically designed for
underwater networks [14]: it defines four packet types that can
be sent through the acoustic nodes. Specifically, the nodes can
send a Data Request (DataReq) and wait for receiving Data
packets. In addition, GUWAL also supports the transmission of
Command and Control (CMD) packets and simple String Text
Message (STR) packets. Moreover, the specific message type
carried by the packet can be specified inside the packet, such as
the type of data sent or requested (e.g., status or position data)
or the specific command sent through the network (e.g., move
or power control commands). Data packets and STR messages
can be sent either upon request or periodically. GUWAL allows
to require an acknowledgement (ACK) for the transmitted
packets throughout a flag set in the application packet header.
The ACK is sent by the destination node in the form of a
CMD packet type.

Since GUWAL and GUWMANET are designed to work
together with a cross layer approach to reduce the packet
header overhead, GUWAL header contains the source and
the destination addresses. Each address is 6 bits long, and
is divided in two parts: the former is 2 bits long and defines
the node type (four different types can be defined), the latter
is 4 bits long and defines the node inside the group of nodes
of the same type. One address is reserved for broadcast, and



TABLE I
NODES AVAILABLE FOR EACH PART OF THE DATASET

Subset of nodes
Part I {NB3, NB4, GB6, GB9, GG1, GS1, GA1}
Part II {SB1, SB2, NB3, NB4, GB6, GB9, GG1, GS1, SS2, GA1}
Part III {SB2, NB3, NB4, GB5, GB8, GB9, GS1, SS2, GA1}
Part IV {SB1, SB2, NB3, NB4, GB5, GB8, GB9, GS1, SS2}

four addresses are reserved for multicast, to send packets to
all the nodes of the same type.

GUWMANET uses a contention Medium Access Control
(MAC) protocol, based on random access. Specifically, each
packet is transmitted after a random backoff time and no
carrier sensing methods are used. To increase robustness, each
packet is automatically repeated after a random time, until
either a given number of retransmissions is reached or an
implicit ACK is received, as the node can overhear the packets
transmitted by the next hop. The number of retransmissions
depends on the priority of the transmitted packets, the higher
the priority, the higher the number of retransmissions. GUW-
MANET is also in charge of performing packet routing: at the
beginning, a simple flooding mechanism is used to forward
packets, then nodes learn routes from packet transmissions and
establish a temporary route using information inserted in the
packets. This temporary route will be used to directly forward
the packets. More details about GUWMANET can be found
in [14].

B. Dataset Description

The dataset collected during the RACUN project is divided
in four parts, corresponding to four different days of the test
described in [15], and each part lasts around 90 minutes. For
each part, a different subset of all the available nodes is used,
and conversations are detected independently for each one.
The subsets of nodes used for each part are reported in Table
I.

In the dataset each entry corresponds either to the packet
generation time, i.e., the time instant in which the application
of the source node generates the packets, or to the packet
reception time, i.e., the time instant in which a node correctly
received a packet. For each entry the whole packet is stored,
therefore information such as source and destination addresses,
the GUWAL packet type and, more in general, all the data that
the GUWAL and GUWMANET protocols store in the packet
can be retrieved.

The entries related to the packet generation times are the
only ones used to perform the conversation analysis from a
network level perspective, while all entries stored by a node
(i.e., all the packets that a node is able to listen to) are used
for the conversation analysis from the node level perspective.
We want to point out that using only the packets received by
a node to detect the conversations poses a further challenge
in the conversation detection, since some packets could not be
detected by a node due to channel errors, and the timestamp of
the received packet accounts for random delays introduced by

TABLE II
SKETCH OF THE RACUN DATASET

TX\RX GB7 NB3 SS2 SB1 ...
t1::PCK1 sender t1NB3 ::RX not rx t1SB1 ::RX ...
t2::PCK2 not rx sender rx() t2SB1 ::RX ...
t3::PCK3 sender t3NB3 ::RX t3SS2 ::RX not rx ...
t4::PCK4 t4GB7 ::RX t4NB3 ::RX t4SS2 ::RX sender ...
t5::PCK5 t5GB7 ::RX not rx sender t5SB1 ::RX ...

... ... ... ... ... ...

the protocol stack and the propagation time, making it more
difficult to detect periodic conversations.

In addition, this dataset can be used to detect conversation
in real time, by analyzing the packets as soon as they are
received by a node. Specifically, each time a node receives
a packet, the algorithms updates the conversation assignment
of all packets received, improving the conversation detection
accuracy.

III. CONVERSATIONS IDENTIFICATION ALGORITHMS

The goal of this paper is to describe the Kieler algorithm
that identifies the different conversations in the network.

A conversation is defined as a communication exchange
between two or more nodes with the aim of conveying the data
of a certain application, e.g., if during the sea trial two nodes
are exchanging periodic status data, periodic ranging informa-
tion, and a REQ/REP data, three separated conversations are
accounted, i.e., a REQ/REP and two periodic conversations.

To detect the conversation we propose a unique algorithm
that can be applied both in a centralized way, i.e., analyzing
all packets generated by all the nodes of the network from
a global network perspective, and in a distributed way, i.e.,
analyzing only the packets received by a node. While the
former can be performed only in post processing accessing
all nodes to extract the transmission logs, the latter can also
be applied in real time directly from each node. Although
less practical, the centralized version can still be applied in
post processing, and provides an important benchmark to the
distributed algorithm, as the latter, having only a partial view
of the complete network, cannot outperform the former.

The conversation detection algorithms considered in this
paper analyze the packets by checking their packet type, source
and destination address, time stamp and the GUWAL packet
checksum to identify the conversations. Specifically:

• the message type is used to identify DataReq and Data
reply pairs or CMDs;

• the source address and the destination address represent
the nodes involved in the conversation, including broad-
casts and multicasts addresses;

• the timestamp is used to check the chronological order of
the messages (e.g., a DataReq should occur before a Data
reply), for the recognition of periodic conversations, and
to check whether a reply was sent within a predefined
time period;

• the checksum is used by GUWAL to reference previous
messages of a conversation, a CMD ACK for example
takes up the checksum of the CMD again.



Fig. 3. Example of signal obtained from periodic packets with period equal
to 300 s.

Not all packets in the same conversation are always directly
related to each other. This is the case if the conversation is
performed between multiple nodes: for instance, two replies
sent by two different nodes to a multicast request are part of
the same conversation,

The first algorithm used to detect conversations, called
method 1, works in both centralized and decentralized ways.
It performs two steps: (i) detection of period conversation, and
(ii) detection of the remaining (non-periodic) conversations.

The first phase consists in treating the packet arrival time as
a signal and trying to detect the period of this signal using Fast
Fourier Transform (FFT). More in detail, each packet arrival is
considered as a pulse in the signal, therefore the signal given
as input to the FFT is 0 everywhere except for the instant when
the packet is received or generated, where the signal will be
equal to 1. An example of this signal is given in Figure 3.

Since we do not known a priori which packets are periodic
and which are not, we first create a list with all packets that
are possible candidates to be periodic ones, then we create the
signal as discussed above, and use it as input for the FFT.
The list of candidate periodic packets is filled based on the
source and destination addresses and on the GUWAL packet
type. Specifically, all the packets with the same source and
destination and with the same packet type are considered to be
candidates for the periodic list. Once the FFT is performed, we
search for a possible candidate period looking at the frequency
response. As last step, the candidate period is used to select,
among the list of possible periodic packets, those that fit
with the found period. In particular, we look if two packets
are at a distance equal to the found period, within a given
tolerance that can be differently set for the centralized and the
decentralized method.

The second phase consists in the detection of non-periodic
conversations. The non-periodic conversations mostly consist
of DataReq and Data reply, or of CMD. For each DataReq,
we look for subsequent Data packets, selecting those for
which the message type and the addresses match. In particular,

considering a node sending a request packet P with destination
address destP we look for all the Data replies which source
address matches destP . Specifically, if destP is the broadcast
address all the source addresses are considered, if destP is
a multicast address1 all the source addresses belonging to
the corresponding node type are analyzed, if the address is
UNICAST, only that specific address is considered. Similarly,
for CMD we search for subsequent packets matching the trans-
mitted command. If the command requires to be acknowledged
by the receiver, we look for a subsequent ACK related to the
transmitted command.

The same algorithm is used also to perform a real-time
conversation detection. Indeed, it is important to assess the
performance in a real-time scenario, when at a given point
some of the packets belonging to a single conversation may not
yet have been received, and therefore the conversation could
not be correctly detected with only this partial information.
As an example, considering a periodic conversation, at least
three packets need to be received before conversations could
be identified as periodic: until the third packet is received,
the first two will therefore be assigned to one or more wrong
conversations. Since the final analysis on the trustworthiness
of a node could be performed in a real-time scenario during
a mission, it is important to understand how the algorithm
behaves in such a scenario.

Another centralized algorithm, named centralized method 2,
has been analyzed. The structure of the algorithm is divided
into two parts. In the first part the algorithm iterates over all
packets and focuses on the first unchecked DataReq, CMD
or STR packet. This packet gets a newly created incremental
conversation number X and is removed from the list of packets
to be checked. In the second iteration, the algorithm compares
all remaining packets with the first one, and assigns to them
the same conversation identifier when the following constraints
are satisfied:

• The packet type must fit, e.g., a DataReply should match
a DataReq.

• The address space is consistent, e.g., the destination
address of a DataReply should be the source address of
a DataReq.

• The amount of time elapsed between two packets of the
same conversation is lower than a predefined threshold,
e.g., a DataReply should have been sent within a few
minutes after a DataReq has been issued.

We underline that two replies sent by two different nodes to the
same multicast request are part of the same conversation, even
if the two replying nodes do not directly exchange packets
between each others.

The second part of the algorithm detects periodic con-
versations. Since a periodic conversation exists when the
same type of packet is sent at approximately the same time
interval, called period, the period must be determined for

1In GUWAL and GUWMANET a packet can be sent in MULTICAST to
all the nodes of the same type, i.e., to all bottom nodes, to all gateway buoys,
or to all mobile nodes.



cn
vN

r 0
cn
vN

r 1
cn
vN

r 2
cn
vN

r 3
cn
vN

r 4
cn
vN

r 5
cn
vN

r 6
cn
vN

r 7
cn
vN

r 8
cn
vN

r 9
cn
vN

r 1
0

cn
vN

r 1
1

cn
vN

r 1
2

cn
vN

r 1
3

cn
vN

r 1
4

cn
vN

r 1
5

cn
vN

r 1
6

cn
vN

r 1
7

cn
vN

r 1
8

un
cla

ss
ifie

d
Conversations (method 1)

cnvNr 0
cnvNr 1
cnvNr 2
cnvNr 3
cnvNr 4
cnvNr 5
cnvNr 6
cnvNr 7
cnvNr 8
cnvNr 9

cnvNr 10
cnvNr 11
cnvNr 12
cnvNr 13
cnvNr 14
cnvNr 15
cnvNr 16
cnvNr 17
cnvNr 18

Co
nv

er
sa

tio
ns

 (m
et
ho

d 
2)

18 3
3

5
1

2
1 1

2
1

1
14

18
18

20
14

21
18

1
12

2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Comparison of two centralized methods for conversation detection
for Part I of the dataset.

the conversations identification. The period is complicated to
obtain, especially in the case periodic DataReqs are issued
along with other non-periodic DataReqs: in this case a periodic
interval is very hard to recognize in the time domain. There-
fore, all potentially non-periodic packets (e.g., the CMDs)
are removed from the list of packets to be checked, to then
proceed with the identification of the periodic conversations.
To perform this operation, the algorithm iterates over all the
packets again. For an unchecked packet, a new conversation
number is created in the same way as in the first part. This
packet is now being checked for similarities (i.e., packet type,
source and destination address) with other packets that were
also unchecked, and all packets where those similarities are
matched and that have been transmitted with the same interval
are assigned to the same conversation. The period check is
based on a previously defined tolerance. Finally, all packets
already assigned to non-periodic conversations are checked
for this periodic conversation and, if necessary, transferred by
changing the conversation number.

IV. RESULTS

In this section we show the results obtained for the conversa-
tion detection, firstly comparing the two algorithms described
in Section III, then comparing the centralized results with the
decentralized ones, and at the end analyzing the performance
in a real-time scenario. For the centralized and decentralized
comparison and for the real-time analysis only the first algo-
rithm is used.

A. Centralized algorithms comparison

Figures 4 and 5 show the comparison between the two
algorithms used for detecting conversations in the centralized
scenario, i.e., from a network level perspective. In particu-
lar, it shows the results obtained with the two algorithms
running on Part I (Figure 4) and Part III (Figure 5) of the

cn
vN

r 0
cn
vN

r 1
cn
vN

r 2
cn
vN

r 3
cn
vN

r 4
cn
vN

r 5
cn
vN

r 6
cn
vN

r 7
cn
vN

r 8
cn
vN

r 9
cn
vN

r 1
0

cn
vN

r 1
1

cn
vN

r 1
2

cn
vN

r 1
3

cn
vN

r 1
4

cn
vN

r 1
5

cn
vN

r 1
6

cn
vN

r 1
7

cn
vN

r 1
8

cn
vN

r 1
9

cn
vN

r 2
0

un
cla

ss
ifie

d

Conversations (method 1)

cnvNr 0
cnvNr 1
cnvNr 2
cnvNr 3
cnvNr 4
cnvNr 5
cnvNr 6
cnvNr 7
cnvNr 8
cnvNr 9

cnvNr 10
cnvNr 11
cnvNr 12
cnvNr 13
cnvNr 14
cnvNr 15
cnvNr 16
cnvNr 17
cnvNr 18
cnvNr 19

Co
nv

er
sa

tio
ns

 (m
et
ho

d 
2)

3
16 17 19 2 1

11
1

1
1 2

1 1 1
2

1
18

18
18

21
1 1

1
1
1
1
4

20

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Comparison of two centralized methods for conversation detection
for Part III of the dataset.

dataset. These figures show the fraction of packets that are
in common between two conversations found by the two
algorithms (yellow squares mean that all the packets assigned
to a conversation with method 2 are in common with the
corresponding conversation obtained with method 1, purple
squares mean that the two corresponding conversations have
no packets in common). If the number of packets in common
is greater than zero, the actual number of packets that are in
common between the two conversations is reported.

B. Centralized vs decentralized results

Figure 6 and Figure 7 compare the results obtained with the
decentralized method with those obtained with the centralized
method 1, from the perspective of two different nodes. In
particular, Figure 6 represents the conversations obtained from
the point of view of the node deployed from the Swedish ship
SS2, compared with the conversation obtained with a network
level perspective for Part IV of the dataset. Similarly Figure 7
shows the results from the perspective of node GS1 when
compared with the centralized solution of the same algorithm.

Both figures show that, as expected, an important aspect
of the decentralized conversation detection are packets not
received by a node due to channel errors. Nevertheless, the
algorithm is still able to properly group the received packets
in the correct conversation. In Figure 6 most of the packets
assigned to a single conversation in the centralized solution
are grouped in a single conversation in the decentralized
solution, as well. In this case, only conversation number 4
(ConvNr 4) of the centralized solution is split in more than
one conversation in the decentralized solution, specifically in
conversations number 1, 13, 14. In this specific case, ConvNr
4 is a periodic conversation and the analysis from a network
level perspective lead to an easy identification of the period.
Indeed, from the node level perspective random delays due



cn
vN
r 0

cn
vN
r 1

cn
vN
r 2

cn
vN
r 3

cn
vN
r 4

cn
vN
r 5

cn
vN
r 6

cn
vN
r 7

cn
vN
r 8

cn
vN
r 9

cn
vN
r 1
0

cn
vN
r 1
1

cn
vN
r 1
2

cn
vN
r 1
3

cn
vN
r 1
4

No
tR
x

Conversations (decentralized method)

cnvNr 0
cnvNr 1
cnvNr 2
cnvNr 3
cnvNr 4
cnvNr 5
cnvNr 6
cnvNr 7
cnvNr 8
cnvNr 9

cnvNr 10
cnvNr 11
cnvNr 12
cnvNr 13
cnvNr 14
cnvNr 15
cnvNr 16
cnvNr 17
cnvNr 18
cnvNr 19
cnvNr 20

unclassified
Co

nv
er
sa
tio

ns
 (c

en
tra

liz
ed

 m
et
ho

d 
1)

15 5
7 11

17
12 6

13 1 1 4
10 3 4

16 5
6 12

13 3
14
15
14

1 2
2 6

1 1
3
1
1
1
1
1

3 2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Comparison between centralized and decentralized solutions obtained
from node SS2 for Part IV of the dataset

cn
vN
r 0

cn
vN
r 1

cn
vN
r 2

cn
vN
r 3

cn
vN
r 4

cn
vN
r 5

cn
vN
r 6

cn
vN
r 7

cn
vN
r 8

cn
vN
r 9

cn
vN
r 1
0

cn
vN
r 1
1

cn
vN
r 1
2

cn
vN
r 1
3

cn
vN
r 1
4

cn
vN
r 1
5

cn
vN
r 1
6

cn
vN
r 1
7

cn
vN
r 1
8

cn
vN
r 1
9

cn
vN
r 2
0

cn
vN
r 2
1

cn
vN
r 2
2

un
cla

ss
ifie

d
No
tR
x

Conversations (decentralized method)

cnvNr 0
cnvNr 1
cnvNr 2
cnvNr 3
cnvNr 4
cnvNr 5
cnvNr 6
cnvNr 7
cnvNr 8
cnvNr 9

cnvNr 10
cnvNr 11
cnvNr 12
cnvNr 13
cnvNr 14
cnvNr 15
cnvNr 16
cnvNr 17
cnvNr 18
cnvNr 19
cnvNr 20

unclassified

Co
nv

er
sa
tio

ns
 (c

en
tra

liz
ed

 m
et
ho

d 
1)

8 3 1 8
18
17

6 2 10
10 1 1 7

8 3 6
11 2 8

4 14
6 1 1 1 7

14
15

3 11
3

1 5 2
2

3
1

1
1

1
1

2 3

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Comparison between centralized and decentralized solutions obtained
from node GS1 for Part IV of the dataset

to the channel propagation and to the protocol stack make it
more difficult to detect periodic packets, inducing the wrong
detection of two packets (assigned to conversations 13 and 14,
instead of conversation 1). Figure 7 confirms that most packets
are correctly grouped together, however in this case 6 original
conversations are split in more than one in the decentralized
solution.

C. Real-time results

In the last step we considered also the performance of the
algorithm used to detect conversations in a real-time scenario.
We considered only the decentralized method, since it is
the only one that can be applied in such case. Indeed, the
centralized solution can only be used in post-processing. For

0 1000 2000 3000 4000 5000
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
sa
tio

n 
de

te
ct
io
n 
ac
cu
ra
cy

NB4 
GB9 
GS1 

Fig. 8. Real-time performance for Part I of the dataset

1000 2000 3000 4000 5000
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
sa
tio

n 
de

te
ct
io
n 
ac
cu

ra
cy

NB3 
GG1 
SS2 

Fig. 9. Real-time performance for Part II of the dataset

each of the four parts of the dataset we show the accuracy of
the detection using as a benchmark the conversation detection
obtained when all the packets are considered. The accuracy
(A), at a given time T , is computed with respect to the
number of packets received until T (Nrx(T )), and not to
the whole part of the dataset. To compute the conversation
accuracy we match together the real-time conversation and
the benchmark conversation that have the maximum number
of packets in common with respect to all the other possible
combinations between benchmark and real-time conversations.
Then the common packets are marked as correct C(T ), while
the remaining packets in the analyzed real-time conversation
(if any) are marked as wrong. Each conversation can not be
matched more than one time, and all the remaining packets
of the unmatched conversations are marked as wrong. The
accuracy is computed as the ratio between the correct packets
and all the packets received until time T .

A =
C(T )

Nrx(T )
(1)



0 1000 2000 3000 4000 5000
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
Co

nv
er
sa
tio

n 
de

te
ct
io
n 
ac

cu
ra
cy

SB2 
GS1 
SS2 

Fig. 10. Real-time performance for Part III of the dataset

0 1000 2000 3000 4000 5000
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
sa
tio

n 
de

te
ct
io
n 
ac
cu

ra
cy

NB3 
GS1 
SS2 

Fig. 11. Real-time performance for Part IV of the dataset

Figures 8, 9, 10 and 11 show the accuracy evolution, by adding
a new incoming packet each time, taking into account 3 nodes
for each part of the dataset.

Figure 8 shows that in this scenario after around 1000 s
from the transmission of the first packet, the accuracy stays
above 0.8 for the 3 nodes almost all the time, and increases up
to 0.9 after 2000 s. A similar behavior is reported in Figure 9
for Part II of the dataset

As we can observe from these figures, the behavior is not
strictly monotonic as a function of time. At first, adding new
packets to the available set can decrease the accuracy of the
conversation detection. Indeed, as an example, when a new
periodic conversation starts, it takes a while to be recognized
as a unique and periodic conversation (as previously discussed
in Section III, at least three packets are needed to be able
to detect a period, but sometimes more packets are needed).
Before the new periodic conversation is detected, the packets
can be assigned to wrong conversations leading to a decrease
of the accuracy. This behavior can be noticed in Figure 10
and specifically for node SB2, where the accuracy rapidly de-

NB3 NB4 GB6 GB9 GG1 GS1 GA1 
Nodes

1000

2000

3000

4000

5000

6000

Ti
m
e 
[s
]

0.42 0.69 0.60 0.82 0.50 0.73 0.70

0.95 0.96 1.00 0.88 1.00 0.97 1.00

0.96 0.95 0.97 1.00 1.00 1.00 1.00

0.94 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12. Real-time performance for Part I of the dataset for all the nodes

SB1 SB2 NB3 NB4 GB6 GB9 GG1 GS1 SS2 GA1 
Nodes

1000

2000

3000

4000

5000

6000

Ti
m
e 
[s
]

0.67 0.67 0.60 1.00 0.33 1.00 0.86 1.00 0.69 0.91

1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.96 1.00

1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.97 1.00

1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 13. Real-time performance for Part II of the dataset for all the nodes

creases from 0 to 1000 s because many periodic conversations
start in this interval. Once enough packets for each periodic
conversation are observed the accuracy increases, as happen
from 1000 to 1500 s. A similar evolution can be observed also
for node SS2.

In Figure 11 the same behavior is observed for node SS2
from 1500 to 2500 seconds. As before, the beginning of new
periodic conversations leads to a decrease in the accuracy
which is rapidly recovered once enough packets have been
observed.

Figures 12, 13, 14 and 15 show the accuracy for all the
nodes available in each part of the dataset. For readability
of the figures, the accuracy is reported only for some time
instants. In Figures 12 and 13 all the nodes have an accuracy
higher than or equal to 0.88 for times bigger than or equal
to 2000 s. Different from previous figures, this representation
does not keep the insight of the variability due to the beginning
of new periodic conversations, but gives an idea of the
accuracy considering larger time intervals, such as those that
can be used when conversation detection is applied to security
in underwater networks.

Figures 14 and 15 depict the accuracy for the nodes in Parts
III and IV of the dataset. In this case some nodes take more
time to reach a higher level of accuracy, but still all the nodes,



SB2 NB3 NB4 GB5 GB8 GB9 GG1 GS1 SS2 GA1 
Nodes

1000

2000

3000

4000

5000

6000
Ti
m
e 
[s
]

0.53 0.75 0.82 0.67 0.71 0.71 0.88 0.68 0.67 0.00

0.87 0.77 0.76 1.00 0.96 0.83 0.83 0.81 0.59 1.00

0.91 0.91 0.94 1.00 0.97 0.86 0.69 0.79 0.76 0.82

1.00 0.91 0.97 1.00 1.00 0.96 0.67 0.89 0.74 0.86

0.99 1.00 0.97 1.00 1.00 0.97 0.77 0.95 0.88 0.92

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 14. Real-time performance for Part III of the dataset for all the nodes

SB1 SB2 NB3 NB4 GB5 GB8 GB9 GS1 SS2 
Nodes

1000

2000

3000

4000

5000

6000

Ti
m
e 
[s
]

0.73 0.33 1.00 0.71 0.62 0.85 0.62 0.62 0.64

1.00 1.00 0.97 1.00 1.00 1.00 0.93 0.85 0.40

1.00 1.00 0.98 1.00 1.00 0.91 1.00 0.77 0.96

1.00 1.00 0.90 0.98 1.00 0.98 0.96 0.83 0.99

0.98 1.00 0.90 0.99 1.00 0.88 1.00 0.88 0.97

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 15. Real-time performance for Part IV of the dataset for all the nodes

except for node GG1 in Part III of the dataset, have an accuracy
higher than or equal to 0.77 for times bigger than or equal to
3000 s.

V. CONCLUSION AND OUTLOOK

In this paper we addressed the problem of conversation
detection, proposing an algorithm to detect conversations in
both a centralized and a decentralized way. While the former
can be used only in post-processing when all the packets
generated by the nodes are available, the latter can be used
to detect conversations in a real-time scenario. The real-time
detection can then be used to compute the reputation of a node
based on its behavior and, consequently, give to each node a
trustworthiness index, with the goal to detect and possibly
isolate misbehaving nodes.

As expected, we observed that decentralized conversation
detection is affected by packets losses due to bad channel
conditions and by random delays introduced by the protocol
stack and the propagation time, making it more difficult to
detect conversations, especially periodic ones. Nevertheless,
in most cases the algorithm used for conversation detection
was found to be accurate and able to group packets in the
same conversation as in the centralized version. In addition,
the real-time detection turns out to be able to rapidly detect
conversations, even periodic ones, promising to be suitable for
the computation of the trustworthiness index. For future work,
we will build a trust model able to isolate misbehaving nodes,

exploiting the conversation detection mechanism presented in
this paper.

REFERENCES

[1] C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic
networks: Current and future research directions,” in Proc. UComms,
Aug. 2016.

[2] G. Yang, L. Dai, and Z. Wei, “Challenges, threats, security issues and
new trends of underwater wireless sensor networks,” Sensors, vol. 18,
no. 11, p. 3907, Nov. 2018.

[3] P. Kumar, P. Kumar, P. Priyadarshini et al., “Underwater acoustic sensor
network for early warning generation,” in Proc. MTS/IEEE Oceans.
Hampton Roads, VA, USA: IEEE, Oct. 2012, pp. 1–6.

[4] A. Signori, F. Chiariotti, F. Campagnaro, and M. Zorzi, “A game-
theoretic and experimental analysis of energy-depleting underwater
jamming attacks,” IEEE Internet of Things Journal, March 2020, Early
Access.

[5] L. Ma, C. Fan, W. Sun, and G. Qiao, “Comparison of jamming
methods for underwater acoustic DSSS communication systems,” in
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), Mar. 2018.

[6] V. Shakhov and I. Koo, “Depletion-of-battery attack: Specificity, mod-
elling and analysis,” Sensors, vol. 18, no. 6, pp. 1849–1869, Jun. 2018.

[7] G. Han, J. Jiang, L. Shu, and M. Guizani, “An attack-resistant trust
model based on multidimensional trust metrics in underwater acoustic
sensor network,” IEEE Transactions on Mobile Computing, vol. 14,
no. 12, pp. 2447–2459, Dec. 2015.

[8] W. Fang, C. Zhang, Z. Shi, Q. Zhao, and L. Shan, “BTRES: Beta-based
trust and reputation evaluation system for wireless sensor networks,”
Journal of Network and Computer Applications, vol. 59, pp. 88–94,
Jan. 2016.

[9] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proceedings of the 6th
annual international conference on Mobile computing and networking,
2000, pp. 255–265.

[10] B. Tomasi, P. Casari, L. Finesso, G. Zappa, K. McCoy, and M. Zorzi,
“On modeling janus packet errors over a shallow water acoustic chan-
nel using markov and hidden markov models,” in MILCOM Military
Communications Conference. IEEE, 2010, pp. 2406–2411.

[11] J. Kalwa, “The RACUN project: Robust acoustic communications in
underwater networks - an overview,” in IEEE OCEANS, Santander,
Spain, Jun. 2011.

[12] C. Tapparello, P. Casari, G. Toso, I. Calabrese, R. Otnes, P. van
Walree, M. Goetz, I. Nissen, and M. Zorzi, “Performance evaluation of
forwarding protocols for the RACUN network,” in Proc. ACM WUWNet,
Kaohsiung, Taiwan, Nov. 2013.

[13] F. Campagnaro et al., “The DESERT underwater framework v2: Im-
proved capabilities and extension tools,” in Proc. UComms, Lerici, Italy,
Sep. 2016.

[14] M. Goetz and I. Nissen, “GUWMANET - multicast routing in under-
water acoustic networks,” in Proc. MCC, Warsaw, Poland, Oct. 2012.

[15] M. Goetz, I. Nissen, R. Otnes, and P. van Walree, “Performance
analysis of underwater network protocols within international sea trial,”
in Proc. MTS/IEEE OCEANS, Genova, Italy, May 2015.


