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Abstract—Underwater acoustic networks are characterized by
long propagation delays, low data rates and a strong channel
variability, that can cause the disruption of acoustic links. For this
reason, the underwater network envisioned in the EDA SALSA
project adapts its network and physical layer parameters, such
as routes to destination, modulation and coding scheme and
transmission frequency band, to the observed acoustic channel.
Before the actual deployment, the network is analyzed and eval-
uated via simulations, interfacing the real-world GUWMANET
network protocol implementation into the DESERT Underwater
simulator, and developing a new time-varying physical layer
where channel metrics obtained during a field-test campaign
are mapped in the simulator in the form of lookup tables.
The results demonstrate how the network performance changes
when considering a different channel realization, confirming
the importance of considering a time-varying channel when
developing communication protocols for underwater acoustic
networks.

I. INTRODUCTION AND RELATED WORKS

A limiting factor for Underwater Acoustic Networks
(UANs) research is the high complexity of their deployment,
due to the need for sophisticated facilities, such as well-
equipped vessels and specialized crews, to safely maneuver
and deploy unmanned vessels, bottom nodes, buoys and all
other nodes that compose the underwater assets [1]. In addi-
tion, the hardware components of the underwater nodes are
usually very expensive, as they are designed to be water- and
high pressure-proof, to be resistant to salty water corrosion,
and are often equipped with long endurance batteries. Clearly,
any problem or failure after the actual deployment will in-
crease the overall cost. Thus, it is crucial to study and test
all hardware and software components of the network before
the actual deployment to prevent future failures, including the
software protocol stack used to coordinate the communication
between the nodes. In this pre-deployment phase, extensive
simulations of the network should be carried out, not only to

tune and optimize the network parameters, but also to avoid
possible future network failures and fix software bugs.

When performing network analysis, one of the most com-
plicated and crucial parts is obtaining realistic results from the
simulation framework. To reduce the gap between real-world
field tests and simulations, the protocol stack employed for
the simulations must match the actual protocol stack imple-
mentation used for deployment, and the channel model used
to simulate the acoustic environments should accurately char-
acterize the area where the network will be deployed. While
the former problem can be overcome by reusing the same
code of the protocol stack for both experimental evaluation
and simulation [2], the latter is more difficult to address since
statistical models are themselves approximations. Specifically,
standardized and universally accepted models of the acoustic
channel do not exist, since the channel characteristics strongly
depend on the actual environment of the underwater network
deployment [3], making it difficult to obtained generalized
models. For this reason, a possible solution to overcome this
problem is to move from statistical characterization of the
physical channel towards a deterministic solution, either ob-
taining the channel characterization for the simulator employ-
ing a ray-tracer [4] (at the cost of a computational complexity
increase), or basing the simulation results on channel metrics
collected from real-field experiments [5], [6].

In the past years many simulators have been developed
for UANs. SUNSET [7] is a network simulator based on
ns2-MIRACLE [8] with the capabilities of reusing the same
code for both simulation and experimental evaluation with real
modems for data transmission. Recently, the new version of
Aqua-Sim, called Next Generation (NG) [9], was developed.
Aqua-Sim NG, based on ns3, maintains the same functionali-
ties of the legacy ns2-based Aqua-Sim version, but obtaining
an improvement in computational performance. Based on ns2-
MIRACLE, the DESERT Underwater framework provides the



APP

GUWMANET

SALSA 
MODEM LF

SALSA 
MODEM HF

TIME-VARYING
PHY LF

TIME-VARYING
PHY HF

Fig. 1. Example of the protocol stack of the SALSA Framework with the
time-varying module for the physical layer.

possibility to simulate and perform experiments with multi-
modal underwater acoustic and optical networks [2]. Unet-
Stack [10] is an agent-based software package that can be
used to simulate underwater networks and then be used for
real field experiments, porting the same network architecture
into a modem with Unet-Stack support, such as the SUBNERO
modem [11].

In this work we present the simulation framework de-
veloped for the European Defence Agency (EDA) Smart
Adaptive Long-and Short-range Acoustic Networks (SALSA)
project [12]. The framework combines the DESERT Un-
derwater Network Simulator [2] and the Gossiping in Un-
derwater Acoustic Mobile Ad-hoc Networks (GUWMANET)
protocol [13], and enhances the DESERT simulator with the
capabilities of a time-varying physical layer.

A. SALSA Simulation Framework - General Overview

The SALSA simulation framework aims to provide a tool
to simulate with high accuracy an underwater network before
its actual deployment, testing all software components of the
network protocols in order to verify their functionalities and fix
all possible bugs. In addition, the simulator allows to test the
network in those limit conditions that are not easy to verify
in a real experiment, such as a large number of nodes, the
presence of many mobile nodes traveling in the area, and
the deployment of an intruder or a malicious node jamming
the network or performing other Denial Of Service (DoS)
attacks. The simulation stack of the dual-frequency acoustic
network used in SALSA (depicted in Figure 1), consists
of the Generic Underwater Application Language (GUWAL)
application layer [13] that is directly connected with the GUW-
MANET network layer that works at both the network and the
Medium Access Control (MAC) layers. The application layer
allows the user to schedule the transmission of data and control
packets to emulate the behavior of GUWAL. The application
can be adapted to different scenarios according to the users’
needs, and its description is out of the scope of this paper.
GUWMANET is a standalone framework developed in C for
sea experiments: its code has been wrapped into the DESERT
Framework to simulate the protocol before the sea trial. This
makes it possible to exploit the simulation capabilities of
DESERT and, at the same time, use in the simulations the

same code that will be used for the experimental tests, where
GUWMANET runs on top of real modems. GUWMANET can
handle multiple frequency bands and modem types (acoustic,
optical and radio frequency modem): in the EDA SALSA
project this ability is used to decide whether a packet should
be transmitted through a Low Frequency (LF) modem using
the 4-8 kHz band, or a High Frequency (HF) modem using
the 24-32 kHz band, and to receive from both modems
simultaneously.

The packets are transmitted between GUWMANET and the
modems in the form of telegrams. In addition, each modem
also receives commands from GUWMANET in the form
of telegrams: these commands are intended to monitor and
control the state of the physical layer, asking, for instance, for
the instantaneous acoustic noise level, and configuring various
parameters, such as the transmission source level and the
coding and modulation scheme. The modem layer translates
all telegrams received from GUWMANET and intended for
the physical layer into DESERT Cross Layer messages that
are sent synchronously to the physical layer to perform the
required configuration.

In order to reduce the gap between the results obtained
from the simulations and the real field experiments, and to
simulate channel variability, a time-varying physical layer was
developed. This new module employs channel metrics based
on the measurements obtained during a field-test campaign,
in the form of lookup tables (LUTs). The goal of the time-
varying physical layer is to include the high variability of the
underwater channel into the simulator, which can facilitate
further studies into adaptive protocols. The physical layers can
adapt its parameters according to the network layer requests.

The rest of the paper is organized as follows. In Sec-
tion II we describe in detail the integration between the
GUWMANET protocol and the DESERT simulator, and in
Section III we present the full description of the time-varying
physical layer. In Section IV we describe the simulation
scenario and compare the performance of the network sim-
ulated with the time-varying physical layer with the same
network simulated using the DESERT legacy physical layer.
In Section V we finally draw our concluding remarks.

II. GUWMANET INTEGRATION

During the RACUN [6] project (concluded in 2014), GUW-
MANET was integrated in the DESERT framework in the
form of a specific DESERT add-on module, requiring to
rewrite the entire protocol from C to C++ using the DESERT
APIs. A change of the GUWMANET C code entailed a re-
implementation of the DESERT C++ module, doubling the
development work and making it difficult to keep the two
frameworks aligned. Another disadvantage of this approach
is the possible introduction of implementation errors when
transferring the C code to DESERT. In addition, a lot of
code adjustments were needed to synchronize the real-world
implementation with the simulation module. For example,
all real-world timers had to be replaced with DESERT C++
timer classes. In addition, the standalone GUWMANET code



is implemented in C and its structure could not run in
multiple instances on the same device. For all these reasons,
after the RACUN project, FKIE and WTD71 redesigned the
complete framework with the simulation porting goal in mind.
Indeed, the GUWMANET network protocol implemented in
the DESERT framework during RACUN, is very different
from the current GUWMANET implementation, as the stand-
alone framework was completely reworked since 2014. First,
the GUWAL application layer now includes many new packets
to support several new applications, such as data muling and
first contact. The new telegrams used in the SALSA project,
instead, are extended to enable the interaction with the HF and
LF modems, and to support different physical layer modulation
and coding schemes (Frequency Repetition Spread Spectrum
(FRSS) and JANUS) used in the project. The modulation and
coding scheme profile is included in the so-called “modem
packet header” together with the address of the node that
transmitted that packet: this header is transmitted in the packet
preamble in order to simplify the modem reception and let the
neighbor nodes estimate the quality of the acoustic link of the
transmitter1.

Given the large number of changes in GUWMANET and
the lessons learnt during RACUN, a different approach is
used in the SALSA project to keep the core implementation
of GUWMANET identical in both the code used for the
simulations and the code used in the real world. In this section,
the integration of GUWMANET into the DESERT framework
is described in detail.

The following list summarizes the main issues addressed
to integrate the real world standalone GUWMANET into the
DESERT simulator.

• Programming language: the standalone version of GUW-
MANET is written in C, does not have an object oriented
architecture, and uses global data structures to save the
protocol state, the transmission queues and the neighbor
list: with this design, only a single GUWMANET in-
stance can run at a time. The DESERT simulator, instead,
is written in C++. Each DESERT layer is represented
by a module with well defined APIs to forward packets
to the upper and lower layers and to handle cross-
layer messages. This object-oriented architecture makes it
possible to have multiple independent instances of each
layer (e.g., one instance per simulated node). Hence, a
way to run multiple GUWMANET instances is needed,
as well as the possibility to interface GUWMANET with
the DESERT APIs to talk with the adjacent layers.2

• Logging system: in the real-world GUWMANET, each
node creates its own log file printing each log entry with
the system timestamp. In simulations, all nodes print each

1The creation of the packet preamble and the link quality estimation
operations performed by the physical layer are considered out of the scope
of this paper and will not be discussed further.

2In fact in the real-world system GUWMANET is interfaced with the
modems and the GUWAL application layer via serial connections and TCP
sockets, thus it requires a specific interface to interact with the DESERT
modules.

log entry into the same file using the simulation time
instead of the actual system timestamp. The use of a
unique log makes it necessary to additionally print the
node addresses in front of each log line.

• Timers: one of the main issues for the GUWMANET
integration is the handling of timers. The real-world
GUWMANET has its own timer classes that only work
with the real system clock. The simulator instead uses its
own event-based scheduler and the GUWMANET timers
need to be adapted to use the simulation time.

In the remainder of this section, we describe the implementa-
tion details performed to solve the aforementioned issues.

A. Interface and data structures

The first step to integrate the GUWMANET C implemen-
tation into DESERT is the development of a C++ wrapper
class. This class is needed to interact with the higher and
lower layers of DESERT and hence implements the APIs
used in the simulator to receive, send up and send down the
simulated packets. To this aim, we created a function that
wraps each of the telegrams that carry a data packet into a
DESERT packet before forwarding it. This function is declared
as “extern C” to allow a C program to call this C++ function.
In addition, also the DESERT command API is implemented
inside the C++ wrapper: this function is used to configure the
protocol parameters with a simulation script, written in TCL.
The GUWMANET logic itself is kept in the original C files,
which are untouched during the whole integration. Therefore,
the only operation required to synchronize the simulation and
the real-world implementation is copying the files from one to
the other.

A GUWMANET wrapper object is created for each node:
this wrapper enables the possibility to use an independent
GUWMANET instance in each of the nodes, by storing all
data structures and timers of a node separately. If a packet
is received, the receive function of the wrapper of that node
is called by the simulator. The function extracts the tele-
gram from the DESERT packet and calls the original receive
function of GUWMANET. The original GUWMANET uses a
single global data structure that stores the state of the node,
such as the timers and the transmission queues. The simulator,
instead, runs multiple instances of the GUWMANET layers,
and needs to use a different data structure for each node, that is
not possible with the current C implementation. To solve this
issue, the binary data containing the information stored in the
data structure of each node is stored in a database, and when
a packet is received or an event occurs at a certain node, the
receive function loads from this database the information of the
receiving node into the GUWMANET global data structure.
This is possible as long as the simulator event scheduler
processes the events in sequence and not in parallel. The use
of pointers to load and maintain the stored data structures
updated allows us to avoid copying big data structures and
hence reduce the simulation time.



B. Logging

The GUWMANET logging system had to be extended in
order to enable all nodes to write their logging information
in the same log file. Indeed, in the real-world GUWMANET,
each node creates its own log file printing each log entry with
the system timestamp. In simulations, instead, all nodes log
into the same file storing the logging information with the sim-
ulated time. To accomplish this task, the logging information is
extended by adding the node address in front of each log line.
Therefore, the log library was adapted accordingly, removing
the creation of a log file for each node: all logging information
of all nodes is printed to standard output, together with the
layer name, the node address and the simulation time. This
library was written in C++ as it needs access to C++ classes
to retrieve the current simulation time from the scheduler.
The log print function itself was declared to be “extern C”
and has the same interface as the original log library of the
standalone implementation. The node name was included in
the global data structure to let the log function know which
GUWMANET instance issued the logging operation. This
function is called every time a node receives a packet or when
a timer expires.

C. Timer

The real-time timers used in the real-world GUWMANET
to schedule events were interfaced with the DESERT simu-
lation time. To perform this task, in the SALSA simulation
framework the timers are stored in a sorted list where the next
expiring timer is always the one in front of the list. With this
design it was possible to implement this interface using only
one instance of a single DESERT C++ timer class in each
node, while the handling of the timer list was kept identical to
the real-world GUWMANET. The DESERT timer was placed
inside the C++ GUWMANET interface class. After an event
(e.g., the reception of a packet or the expiration of a timeout) is
completely processed, the DESERT timer is rescheduled to the
next item of the timer list. When the DESERT timer expires,
the content of the node involved in the event is restored in
the GUWMANET global variables, and the DESERT expire
routine for that event is executed.

III. PHYSICAL LAYER

Many physical layer parameters can be adapted according
to the GUWMANET indications. The physical layer can
change modulation scheme, source level, data rate, and other
parameters. The physical layer modulation schemes considered
in SALSA are FRSS and JANUS.

FRSS [14] is a coherent modulation scheme that is known
to perform well under a wide variety of underwater acoustic
channel conditions [14]–[16]. FRSS comes with a choice of
four different data rates, labeled FRSS1 (fastest, least robust)
through FRSS4 (slowest, most robust). This flexibility will
accomodate studies into an adaptive choice of the data rate.

JANUS [17] is a non-coherent modulation scheme standard-
ized by NATO. Among other things, it is suitable for first
contact applications between different modems.

Fig. 2. Topology used to collect the data to be exploited in the time-varying
physical layer. Figure from [15].

A different modulation does not only change the bit rate and
the packet duration, but also the probability of correct recep-
tion. Given that the packet errors are mapped in the simulator
in the form of LUTs, a different LUT is selected depending
on the modulation used, as explained in Section III-A.

Finally, the physical layer provides the packet delay spread
and the input and output Signal to Noise Ratio (SNR) of each
received packet and, upon request, can notify GUWMANET
of the perceived noise level. These parameters are first sent
to the modem layer using the DESERT CrossLayer messages:
the modem then converts these messages in GUWMANET
telegrams and sends them to the network layer.

A. Time Varying Channel

The time-varying physical layer employs a database to store
the link quality metrics that are used for the simulations.
To store, access and manage the entries of the database, the
NetCDF set of libraries are employed [18]. The database
contains the link quality metric for each of the links between
the nodes depicted in Figure 2. Every time in the simulation
when there is a transmission from node A to node B, the two
nodes are associated to the nodes in the database closest to
A’s and B’s positions, based on their geographical position.
To obtain a time-varying link, the quality metrics are stored
in the database for periodic time intervals. Then, the value
for the quality metric associated to A and B is chosen based
on the actual simulation time: the time value in the database
closest to the simulation time is selected to be used in the
simulation (with the database time wrapping around if the
simulation time extends beyond the maximum database time).
Eventually, the value of the link quality metric between the
two nodes is employed to compute whether or not a packet
transmitted by node A is received correctly by node B. The
time-varying physical layer supports simulations with dual-
band connectivity, as the channel quality metrics have been



Fig. 3. Example of LUT content for one combination of TX node, RX node,
and Technology, for the LF band. Cycle interval is 180 s.

obtained for both an LF band and an HF band. Based on the
band employed in the simulation, the link quality search in
the database will be performed in the proper set of channel
metrics.

Figure 2 shows the nodes’ deployment and location used to
perform the time varying channel data acquisition campaign
in Oslofjorden [15]. Note that drawbacks of the method
include the sparse spatial sampling used for nearest-neighbor
interpolation, and the influence of node depth which is not
modelled.

B. LUT details

The LUT data is first stored in Matlab .mat files, with a
format building on what is used in the recently published
ASUNA framework (“a shared underwater network emulation
data set”) [5], before being converted to netCDF database files
which are imported in an ns2/DESERT module. This gives the
possibility to later reuse our efforts to integrate ASUNA with
the ns2/DESERT network framework.

Compared to the format described in [5, Sec. III-D], we
have added the extra dimension of varying source level (with
the resulting SNR reduction emulated in replay by adding
scaled time-adjacent noise recordings). In the nomenclature
of [5] we set N = 9 as the maximum number of nodes in
the topology (index 3 was not used for any stationary node,
and is here used for the moving node), P = 5 as the number
of “Technologies” (FRSS1-4, and JANUS), T as the number
of cycles in the run, and L as the number of emulated source
levels. We prepared one .mat file for each frequency band,
with the following contents:

• A TopMat matrix of size T×N×N×P×L, where each
entry TopMat(t,i,j,p,l) contains the link quality,
in terms of output SNR, for the link between nodes i
and j through physical layer Technology p at cycle t
and source level index l.

• A TopMat_binary matrix of size T ×N ×N × P ×
L, where each entry TopMat_binary(t,i,j,p,l)
contains the link quality, in terms of success (no bit
errors) or failure (one or more bit errors), for the link
between nodes i and j through physical layer Technol-
ogy p at cycle t and source level index l.

Fig. 4. Example of moving node LUT content for one combination of TX
node, RX node, and Technology, for the HF band. Lower panel shows distance
vs time. Cycle interval is 92 s.

• A LocMat matrix of size T × N × 3, where the three
entries LocMat(t,i,1:3) represent the two UTM
coordinates and the depth of node i, respectively, at cycle
t.

• A TechMat_TX matrix of size T ×N ×P , where each
of the k = 1, . . . , P entries TechMat_TX(t,i,1:P)
is 1 if node i is able to transmit Technology k at cycle
t, and 0 otherwise.

• A TechMat_RX matrix of size T ×N ×P , where each
of the k = 1, . . . , P entries TechMat_RX(t,i,1:P)
is 1 if node i is able to receive Technology k at cycle
t, and 0 otherwise.

• An AdjMat matrix of size T×N×N×L, where each en-
try AdjMat(t,i,j,l) is 1 if nodes i and j are linked
by any Technology (as indicated in TopMat_binary)
at time t and source level index l, and 0 otherwise.

• A scalar delta_T which holds the number of seconds
between each cycle.

• An SL vector of length L which holds the source level in
dB re µPa2m2 corresponding to each source level index
l.

• A Technologies cell array of length P , holding the
name of each Technology.

Fig. 3 shows an example extract of LUT content for FRSS.
The JANUS receiver does not provide output SNR, hence we
let the entries of TopMat for this Technology be +5 dB when
there is successful reception, and –5 dB otherwise.

The DESERT interface into the lookup tables is a function
call on the form getPER(Position* TxPos, Position* RxPos,
double SourceLevel, signal type e sig type, uint num bits).
As the lookup tables only cover a small set of node po-
sitions, the implementation will find the nearest available



Fig. 5. Example of collision LUT content for one combination of TX node (N8), RX node (N1), and interfering node (N9). Only two desired (Md) and
interfering (Mi) Technologies are shown here. Color map is the same as in Figs. 3-4.

node position to each requested position (nearest neighbor
approximation). If the smallest distance found is above a
configurable threshold, a Packet Error Probability (PEP) of
1.0 is returned. In addition to the parameters provided in the
interfaces, the current time “NOW” of the simulator is used for
the stationary node LUTs, to access the correct time index in
the database. Nearest neighbor approximation is also used for
the source level, selecting the highest or lowest available value
if the desired value is outside bounds. Finally, the output SNR
values in the LUTs are, in combination with the number of
bits, converted to PEP using empirical expressions (outside the
scope of this paper) found through Additive White Gaussian
Noise (AWGN) simulations of the error-correcting code used
with FRSS.

C. LUTs for mobile nodes

There are also LUTs for two mobile nodes that were present
during part of the sea trial where the data was collected,
transmitting to the stationary nodes in the LF and HF band,
respectively. These are stored in a similar format as the data
for stationary nodes. Fig. 4 shows an example of LUT content
for a moving node. As this data is a function of time and space,
the time variation is ignored and instead the LUT time when
the actual moving node position was closest to the requested
moving node position is used.

D. Collision LUTs

LUTs describing the effect of collisions under the channel
conditions where also generated, by time-shifting and adding
received signals so they overlap. These LUTs have dimen-
sions N × N × N × P × P × R × T , where each en-
try CollMat(Kd,Ki,Kr,Md,Mi,r,t) contains the link
quality, in terms of output SNR, for the link between nodes Kd
and Kr through physical layer Technology Md when interfered
by node Ki through physical layer technology Mi, at ρ index
r and τ index t. Here, ρ represents one of R different
relative amplitudes between desired and interfering signal, and
τ represents one of T different time shifts between the signals.
Fig. 5 shows an example of collision LUT content.

As the collision LUTs already have many dimensions, time
variation is not modeled. Instead, a single selected time cycle
with good input SNR is used for each link.

We have implemented a collision model in DESERT which
keeps track of a list of interfering packets received at a given
node. For each received packet, it is first checked if the regular
LUT causes the packet to be received in error. If not, it is
checked for each of the interfering packets received within
an overlapping time interval whether that collision causes the
packet to be received in error.

IV. SIMULATION SCENARIO AND RESULTS

A simple simulation scenario is presented to illustrate the
proposed framework.
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Fig. 6. Overall packet delivery ratio versus LF transmit power of a single simulation run. Fig. 6a and 6b are based on simulations using the LUTs and
Figures 6c and 6d using Urick’s model.

A. Simulation Scenario

The proposed framework and the effects of the time-varying
physical layer on network performance is illustrated with a
simple network simulation scenario based on the topology
shown in Fig. 2. In addition to the static nodes, two AUVs are
included which move between the endpoints of the two runs
that was performed to gather data for the LUTs for moving
nodes.

A low traffic load is generated by having one new packet
sent every 100 s, alternating the source node between all
bottom nodes and AUVs. For the bottom node positions
that did not have transmit capability during the at-sea data
collection [15], nearest neighbor approximation is applied as
discussed earlier. The destination node is always the node
denoted N7 and each node transmits 10 packets. The packet
size is 20 bytes.

All four FRSS modes are evaluated: during one simulation

run the FRSS mode is fixed and the same mode is used for
both the LF and HF modems. As a comparison, the legacy
physical layer based on Urick’s propagation model already
included in DESERT is used. In order to make the comparison
somewhat fair, the bit rate for the legacy model is adjusted
to be equal to the corresponding effective bit rate of each
FRSS profile, specifically, 429 bps, 227.6 bps, 130.4 bps
and 72.6 bps. The legacy model computes the signal SNR
as presented in [19], and computes the BER based on the
modulation as described in [20]. A practical spreading of
1.7 is set, and a shipping activity of 0.5 and wind speed
of 5 m/s are considered. The interference model selected is
MEANPOWER, that spreads the interference uniformly over
the entire packet duration, considering the errors uniformly
distributed. In order to capture the reduced robustness aspect
of increasing the bit rate, four PSK configurations have been
selected, namely 32PSK, 16PSK, 8PSK and BPSK, because,
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Fig. 7. Overall packet delivery ratio versus LF transmit power averaged over 20 simulation runs. Figures 7a and 7b are based on simulations using the LUTs
and Fig. 7c and 7d using Urick’s model.

together with BFSK, these are the available modulations in
the DESERT legacy model. For both physical layer models
the transmit power of the LF modem is varied between 150
and 180 dB re µPa2m2.

Two different time offsets for the LUTs are evaluated, one
starting at the beginning of the LUT and one with a time offset
of 40,000 seconds. For the non time-varying setups the time
offset simply leads to a different seed value for the random
number generators.

B. Results

The results from the network simulations are shown in
Fig. 6 which shows the average packet delivery ratio (PDR)
of the overall network for different LF transmit power levels

for different bit rates at the physical layer. Comparing the
two different time offsets for the LUTs (Fig. 6a and 6b) the
network performance is generally better at all FRSS rates in
the first part of the LUT (time offset 0) compared to the
later part of the LUT due to the channel experienced by
the nodes. The results show that the optimal FRSS profile
from a network perspective is not easily determined, though
the highest rate performs arguably worst due to noise and,
mostly, reverberation [15]. The link distances in the simulated
scenario may be too small to differentiate significantly between
FRSS2–4.

The fact that different FRSS profiles are optimal at different
time offsets and output power levels indicates that adaptive
approaches could benefit the network performance. The packet



size most likely also affects the choice of FRSS profile and
the rather small packets in this simulation negatively affect the
higher rate profiles as a larger proportion of the transmission
time consists of overhead.

For the legacy physical layer model the overall PDR is
generally higher. 32PSK performs poorly for a transmission
power of less than 170 dB re µPa2m2, whereas the PDR
increases up to more than 90% when the transmission power
is more than 175 dB re µPa2m2. Similarly, for 16PSK the
PDR becomes higher than 85% when the transmission power
is more than 167 dB re µPa2m2, while for the other modulation
schemes the PDR is already higher than 80% also for a
transmission power of 150 dB re µPa2m2.

While the PDR difference of the two plots with the LUTs is
mainly caused by changes in the channel, the PDR difference
of the two plots without LUTs is mainly caused by sporadic
collisions due to a different seed in the randomization of the
packet transmissions. The difference between the two plots is
mitigated averaging upon multiple simulation runs, as proven
by Fig. 7c and 7d, while with the LUTs the plots are still
quite different as they experience a different acoustic channel
(Fig. 7a and 7b).

V. CONCLUSION

In this paper we described the SALSA simulation frame-
work, where nodes equipped with LF and HF modems able to
switch modulation according to the network layer indications
are interconnected with each other. The network layer is
based on the GUWMANET protocol, that forwards the packets
generated by the GUWAL application layer with a redesign of
the gossiping algorithm to address the aspects of underwater
acoustic mobile ad hoc networks. The simulator consist of
three main components, namely: the DESERT Underwater
network simulator, the integration of GUWMANET into the
DESERT simulator, and a time varying physical layer im-
plemented using LUTs based on the tracks obtained during
an extended field-test campaign. The latter also provides
GUWMANET information about the acoustic noise, the input
and output SNR, the delay spread, and other metrics, to allow
the network layer to decide which physical layer configuration
should be used to transmit a certain packet to a certain destina-
tion. In fact the physical layer can use different modulation and
coding schemes, as well as different transmission powers. Sim-
ulation results present how the network performance changes
when considering different channel realizations, something
that could not be accomplished using the legacy DESERT
physical layer model.

This work is a guideline, so that scientists can insert their
real-world network protocols into the DESERT Framework
and test them against this benchmark in a realistic scenario
with a channel based on real measurements. This would enable
a fair performance comparison and will help the underwater
network community evaluate new protocols with a common
benchmark.
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