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Abstract—Underwater acoustic networks are often used in
mission-critical scenarios, such as military underwater networks
and assets deployed for tsunami prevention, hence an attack
performed against these types of networks can easily lead
to disastrous consequences. Nevertheless, countermeasures to
possible network attacks have not been widely investigated
so far. A reputation system, where a node gains trust each
time it exhibits a good behavior, and loses trust each time it
behaves suspiciously, is an effective way to identify possible
attackers in the network. The main challenge when applying
a reputation system in an underwater network is to understand
whether the network performance degrades because a node is
acting maliciously intentionally, or because of changed channel
conditions causing a large packet drop. For instance, when a ship
travels close to an underwater network deployment, it causes an
increased packet loss, and so does the change of environmental
conditions, such as a drop of temperature, the presence of rain
or the increase of the wind speed. This behavior of the acoustic
channel can be characterized with a Hidden Markov Model,
whose parameters are obtained observing the time evolution of
the acoustic channel in a sea experiment.

This paper presents a trust model based on the knowledge of
the channel state, inferred from the perceived noise and received
signal strength, in which misbehavior and correct behavior are
differently considered according to the actual channel state. We
evaluate the model both analytically and through simulations,
implementing the trust mechanism in the DESERT Underwater
Network framework.

Index Terms—Hidden Markov Models, trustworthiness, under-
water acoustic communications, security in underwater networks,
reputation

I. INTRODUCTION

Communication under the sea is gaining more and more
interest in the last years, due to the development of new
applications enabled by sophisticated sensors and underwater
unmanned vehicles that follow pre-loaded missions or are
remotely controlled by a central station. Due to the challenges
imposed by the underwater channel, electromagnetic signals
propagate for only a few meters under the sea, while optical
communications suffer from water turbidity and need align-
ment between transmitter and receiver [1], and can be used
only for some very specific scenarios [2]. Acoustic signals,
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instead, propagate up to a few kilometers, a communication
range that suits well the needs of an underwater deployment,
at the price of low bandwidth and datarate, large propa-
gation delay, and poor performance in scenarios where the
combination of noise and multipath can significantly affect
the network operation [3]. In addition, the change of the
weather conditions can suddenly affect the quality of the
acoustic links, and, therefore, the network coverage. Due to the
disruptive nature of acoustic networks, in the last two decades
scientists focused their efforts on designing routing [4]–[6]
and Medium Access Control (MAC) protocols [7]–[10] able
to contrast the challenges imposed by the acoustic channel,
and self-adapting physical layers able to change frequency
and/or Modulation and Coding Scheme (MCS) according to
the channel conditions, for example using a more robust
modulation and adding more coding redundancy when the
communication is facing a poor channel link [11], [12], or
switching transmission frequency to reach a longer range or a
higher throughput [13].

Security aspects of underwater wireless acoustic networks,
instead, have not been widely studied so far and require a
dedicated effort, due to the fact that the countermeasures used
in wireless terrestrial networks cannot be directly applied to
the underwater domain. For instance, a freshness index based
on the generation time of a data packet, used to check if a
malicious node is performing a replay attack [14], is a valid
countermeasure in a wireless network, where the packet header
already contains the packet generation timestamp, but is not a
valid countermeasure in underwater networks, where only few
bytes are used for the packet header, as the communication
overhead needs to be minimized due to the low datarate. In
addition, such countermeasure, that restricts the time validity
of a packet transmitted in an underwater network, can result in
the drop of legitimate packets, as underwater networks may be
characterized by a very large Packet Delivery Delay (PDD),
of the order of up to a few minutes.

In order to defend against a Denial of Service (DoS) attack
(Figure 1) there are two possible strategies. The first consists in
providing a countermeasure to specific attacks, analyzing how
the network behaves when these attacks are performed [14],
[15]. On the one hand, this solution is very effective, as it usu-
ally allows to both detect an attacker and avoid the DoS; on the
other hand, it requires the knowledge of the attacker setup, and
an extended simulation study where different variations of the
attack are performed and analyzed. In case a different attack
is applied, a different countermeasure needs to be taken. The
second strategy, instead, consists in using a trust mechanism,



2

 

Fig. 1: Example of an underwater acoustic network, with nodes (green nodes) sending data to a sink (yellow node), while a malicious node (red node) tries
to attack the network

based on the reputation of the nodes [16], [17], to identify
whether or not a node can be expected to follow the protocol
rules of the underwater network. Indeed, a trust mechanism
can be applied whenever the definitions of correct behavior
and misbehavior are stated precisely and can be detected
through the overhearing of the packets. For instance, in a sink-
hole attack the neighbors of a malicious node can mark it as
untrustworthy if they do not overhear the correct forwarding
of the packets, while in a replay attack a node is not trusted if
it retransmits the same packet more times than expected by the
protocol stack [18]. In the case of a spoofing attack, instead,
if a node observes in a short amount of time the transmission
of two packets with the same source node identifier but with
a completely different received power (and/or SNR), it can
suspect that an attacker is stealing the identity of a legitimate
node and can mark this as a misbehavior. If it has already
collected enough information about the legitimate node, it can
also identify who is the attacker observing the received power
and the channel impairments, otherwise it can still detect
that there is an ongoing attack and notify this event to the
other nodes in the network. While this strategy is limited to
identifying the attacker rather than limiting its effect, its main
advantage is that it can be applied to many different attacks,
thus providing a general defense solution. For instance, a node
marked as untrustworthy can be excluded from the packets’
route, and the packets coming from that node can be discarded
by the other nodes. In addition, the untrustworthy node can be
localized via triangulation, and eventually removed from the
network.

To infer the reputation, a node needs to observe the behavior
of its neighbors by overhearing transmissions by the other
nodes. This solution is widely used in terrestrial wireless
networks, where a node can exploit the broadcast nature of
the channel to understand the behavior of its neighbors, by
overhearing the packets they transmit. This mechanism can be
referred to as watchdog [19], implicit ack, or overhear forward-
ing mechanism. In this paper we present a trust mechanism
for underwater networks, where we adapt approaches used in
terrestrial wireless networks to the disruptive nature of the
acoustic channel by using subjective logic [20] to take into
consideration the uncertainty caused by the acoustic channel
quality evolution. The use of subjective logic to provide a trust

measure for the nodes of a network has been already employed
in terrestrial networks [16], [21], however the peculiarity of the
acoustic channel poses a further challenge in the analysis of the
node trust. Indeed, bursts of packet errors characterize acoustic
communications due to the multipath, high delay spread and
ambient noise of the acoustic channel. For these reasons the
trust models designed for the terrestrial counterpart do not take
into account channel measures to compute the reputation. On
the other hand, other methods based on bayesian models, often
employed to compute the trust in terrestrial networks [22],
[23], are not applicable to underwater networks because they
do not consider any link disruption caused by the variability of
the acoustic channel. The risk of this approach is to estimate
the reliability of the channel rather than the trustworthiness of
a node.

The main contribution of this paper is the design of a
trust module that provides a measure of trust of the one-hop
neighbors. Our proposed framework is: i) general enough to
deal with different types of attacks; ii) specifically tailored for
underwater acoustic networks; iii) independent of the network
topology and of the number of nodes joining the network.
Indeed, as soon as the concepts of correct behavior and misbe-
havior are well defined, the model can be employed to discover
different attacks, such as sinkhole and resource exhaustion.
Moreover, the unique characteristics of the underwater acous-
tic channel are taken into account in the trust model by consid-
ering channel based metrics, such as noise and Signal to Noise
Ratio (SNR), and modeling the acoustic channel variability
with a Hidden Markov Model (HMM) [24]. The proposed
system is evaluated both analytically and through simulations
based on real field measurements, using the flooding network
protocol in the DESERT Underwater network simulator [25].
The trust model can also be used in real-field applications
such as in underwater acoustic networks employed for coast
surveillance that make use of the Gossiping in Underwater
Acoustic Mobile Ad-hoc Networks (GUWMANET) protocol
[5], [18] specifically tailored for military networks. In this
paper we focused on analyzing the feasibility of the trust
model, assessing whether or not a node can make a decision
on the trustworthiness of its neighbors based on its own obser-
vations. At this stage, we do not consider the possibility that a
node shares its information with its neighbors. Although this
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could help avoid misdetections, it would also pose two main
other challenges: sharing the information without increasing
the overhead too much and avoiding the spreading of false
information from malicious nodes. Thus we decided to leave
this study for future works.

II. RELATED WORK

Trust is a measure of the belief that a given subject will
behave according to what is expected. This measure can
be applied to many different fields [26], from sociology
to science, academia, journalism, economics, medicine and,
finally, wireless terrestrial and underwater networks, the last
being the focus of this paper. The trust of a node can be
based either on authentication certificates and cryptographic
keys [27], or on a reputation-based system, the latter being
more relevant to Mobile Ad Hoc Networks (MANET) [26].
Although lightweight authentication schemes for vehicular ad
hoc networks exist [28]–[30], they usually rely on broadband
communication links: this assumption is not applicable in
underwater acoustic networks, where the characteristics of
the acoustic channel, such as high latency and low datarate,
can make the authentication process last several seconds or
minutes, especially in case of congested networks or in case
of retransmissions due to packet loss.

Also distributed blockchain-based authentication
schemes [29] imply a high message overhead to distribute
the information among the nodes; furthermore they are
computationally demanding and may cause the battery
depletion of underwater nodes. Many works in the literature
propose a reputation-based system for terrestrial wireless
networks [16], [17], [31], but only a few papers address the
aspects of underwater acoustic networks, and most of them
only propose a preliminary analysis [32], [33].

The authors in [31] demonstrate how a watchdog-based
reputation system applied to the Ad-hoc On-demand Distance
Vector (AODV) routing protocol in a wireless mesh network
provides significant benefits in terms of network performance
when the network is under attack. This reputation extension
of the AODV protocol, called AODV-REX, has been tested
against malicious nodes performing blackhole and grayhole
attacks. The reputation of a node computed by one of its neigh-
bors increases when it correctly forwards received packets
according to the network protocol. Conversely, if this does not
happen within a certain time interval, the reputation decreases.
This observation can be performed by means of the watchdog
mechanism, i.e., the neighbors of a node can overhear the
packets it transmits even if these packets are not for them.
The more interactions a node A performs with a node B, the
more the reputation of B computed by A is considered solid.
The reputation of a certain node is finally shared among the
nodes of the network: the more the reputation values for that
node differ, the less the node is trusted. While the watchdog
mechanism can also be applied to our scenario, the proposed
reputation system cannot be directly applied to underwater
networks due to the disruptive nature of the acoustic channel
and the overhead introduced by the signaling of the AODV-
REX routing.

The authors in [16] propose an extension of the AODV
routing protocol, called Trusted AODV (TAODV), where the
trust of the nodes is performed using watchdog. The protocol
has been designed for secure MANET. In this work, the trust
among nodes is represented by opinion, which is an item
derived from subjective logic. An opinion can be interpreted
as a probability measure containing secondary uncertainty:
specifically, a node may be uncertain about another node’s
trustworthiness because it does not collect enough evidence.
For this reason, in subjective logic an opinion is modeled
using belief, disbelief and uncertainty. Subjective logic is also
used in the trustworthiness model presented in [17], where the
authors used the uncertainty to model the error probability of
the channel, that is assumed to be constant. They also use
federated learning for distributed model training using local
datasets from large-scale nodes, but this method applies well to
terrestrial networks where large datasets can easily be collected
by observing the traffic of cellular networks, rather than to
acoustic networks where only a few network deployments can
be observed in reality. Conversely, subjective logic can be
applied to our security system, in order to model the case
where the transmission of a forwarded packet is not observed
due to adverse conditions of the acoustic channel rather than
the intentional misbehavior of a node. We extended the model
presented in [17] addressing the nature of the acoustic channel,
where the error probability is not constant in time but changes
during the day.

Sharing the trust metrics among nodes can help build a
reputation system in a cooperative way. The drawback of this
solution is that it is prone to attacks where the malicious node
transmits wrong reputation scores of the other nodes, causing
severe damage to the network. However, in [22] the authors
prove that, as soon as all nodes share enough reputation
information, the effect of a malicious node sharing wrong
information on purpose is mitigated. A Bayesian approach
is used to update the reputation, taking into account the
possibility that the reputation value may be received from a
malicious node. In their paper they also use a discount factor
to weigh recently observed events more than events occurred
in the past, thus addressing the case when a node changes its
behavior after a certain amount of time.

Security aspects of underwater acoustic networks have
been partially addressed, since only recently have researchers
started focusing their work on these aspects. The simulation
study in [33], for instance, uses trust in underwater networks
to enhance location privacy rather than to detect intruders
and malicious nodes. ITrust [32], instead, is an anomaly-
resilient trust model based on isolation forest for underwater
acoustic sensor networks. ITrust is composed of two sequential
stages: data fusion – by aggregating various trust metrics –
and defective node detection through the trust model. The
model has been evaluated via simulation, with the simplistic
assumption that the acoustic noise power spectral density can
be computed with the analytical formulas presented in [3].

Conversely, in our work we model the acoustic channel
according to the statistics of sea trial measurements. Indeed, in
the last fifteen years researchers [24], [34]–[36] demonstrated
that the time evolution of underwater acoustic channels can
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be statistically well characterized with two- and four-state
Markov models [37] and with a two-state HMM [38]. Specifi-
cally, in [35], they proved that a three state Markov model is a
good candidate to describe the correlated underwater acoustic
channel dynamics. More recently, in [36] a two-state Markov
chain trained with the KAM’11 sea trial data [39] has been
used to model the evolution of the acoustic channel. Finally,
in [24] the authors demonstrated, using the SubNet’09 sea
trial data [40], that an HMM is able to track well long term
channel behaviors, outperforming both two- and four- state
Markov models. The use of Markov models to characterize the
behavior of the channel is well-known also in terrestrial net-
works [38], [41]–[43] where the transition probabilities from
the states of the Markov Chain are usually obtained exploiting
well-established statistical channel characterizations such as
Rayleigh fading or Rician fading channel models [44]. In
underwater acoustic networks, instead, there is no commonly
accepted statistical model for the channel behavior, since
the channel is strongly affected by the local environmental
conditions of the network deployment. Therefore, in acoustic
networks the parameters of the Markov model are often
inferred from experimental measurements. An evaluation of
the three Markov models (the two Markov models of [37]
and the HMM of [38]) compared with sea trial measurements
is presented in [24]. The discussion on which model best
fits the experimental data is carried out considering relevant
metrics for networking, i.e., packet error rate (PER), length
of error bursts and correlation of errors after a given number
of packet transmissions. Results show that HMMs yield an
accurate reproduction of the channel metrics, tracking well
long term channel behaviors. For this reason, we decided to
model the acoustic channel with a two-state HMM.

III. CHANNEL MODEL

Given the disruptive nature of the acoustic channel, where
an acoustic link between two nodes may present only a small
packet loss for several hours, then present a high packet loss
for a few hours, and then return stable again, it is not trivial to
understand when a drop of performance of an acoustic network
is caused by a DoS attack or by bad channel conditions. The
increase of packet loss can be caused by several factors [3],
for example the increase of noise caused by a ship travelling
close to the network deployment, by the presence of strong
rain and wind, or by the presence of shadow zones caused by
a temperature drop and the consequent change of sound speed
profile [45].

In this work we characterize the acoustic channel quality
evolution by using a two-state HMM, following the work
presented in [24]. The trust model presented in this paper is
built on top of the Markov channel model. In an HMM, the
observable events stay on top of a non-observable structure,
the Markov Chain (MC). The underlying, non-observable link
model is a two-state MC that defines two states for the
goodness of the channel, specifically a GOOD (g) and a BAD
(b) state, collected in the set S = {g, b}. The probability of
receiving a transmitted packet is og in GOOD state, and ob in

g b

Pgb

Pbg

Pgg Pbb

Fig. 2: Two-state MC.

BAD state, with og > ob. The MC is described through the
transition probability matrix P

P =

(
Pgg Pgb

Pbg Pbb

)
, (1)

where Pij is the probability of moving from state i to state j
in one step, with i, j ∈ S . Figure 2 shows the two-state MC,
where Pbb = 1− Pbg and Pgg = 1− Pgb.

The n-step transition matrix P n, can be computed as
described in [46]

Pn =
1

Pgb + Pbg

(
Pbg Pgb

Pbg Pgb

)
+

(1− Pgb − Pbg)
n

Pgb + Pbg

(
Pgb −Pgb

−Pbg Pbg

)
,

(2)

with n the number of steps after which the system described by
the MC is observed again. We denote the state visited at step
n as Xn = s ∈ S . The steady state probability vector π =
[πg, πb], with πg+πb = 1, does not depend on the initial state,
and can be computed from the transition probability matrix,
specifically,(

1
1

)(
πg πb

)
= lim

n→∞
Pn =

1

Pgb + Pbg

(
Pbg Pgb

Pbg Pgb

)
(3)

where the last equality holds because 1−Pgb−Pbg is smaller
than 1 and therefore the second term in Equation (2) goes
to 0, thus obtaining πb =

Pgb

Pgb+Pbg
and πg =

Pbg

Pgb+Pbg
. Pgb,

Pbg , og and ob can be either set manually, in order to study
the system in a synthetic channel, or obtained from sea trial
measurements [24].

IV. TRUST MODELS

A. Subjective Logic

The trust model presented in this paper is based on the
observation of the behavior of the neighbors, through the so
called watchdog mechanism. In general, when a node of the
network receives a packet, it needs to perform a task. For
example, if node A sends a packet to node B, and B is not the
final destination, B could be required to forward that packet
either once or several times, depending on the routing protocol
used in the network stack. The packet forwarded by B will
be overheard by all of B’s neighbors, including A. From A’s
point of view, B’s task will be correctly accomplished if A
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overhears B’s packet, or result in a misbehavior if A does not.
Depending on the running protocols and applications, tasks
can be different, from the forwarding of a single packet, to
the transmission of a series of packets whose number and
inter-transmission times depend on the running application.
Independently of the task, the final result will always be a
decision by node A about whether B’s action corresponds to
a correct behavior (C) or a misbehavior (M). In this work,
a misbehavior is defined as the observation (or the lack of
an observation) by a node about an action from the neighbor
not compliant with the protocol rules, regardless of whether
the action was intentionally carried out by the neighbor or
caused by bad channel conditions. For example, if a neighbor
is required to forward a packet and the node does not overhear
its neighbor’s transmission, this will be considered as a mis-
behavior regardless of whether the packet was intentionally
dropped by the neighbor or it was actually transmitted by
the neighbor but not overheard by the node because of bad
channel condition. The goal of the trust model is to be able
to distinguish between intentional misbehavior and unintended
misbehavior caused by channel loss that in principle are not
discernible by the overhearing node. The model can be applied
in networks with tethered nodes as well as networks with
non-tethered nodes. While in the former scenario the network
nodes have almost fixed position, so that the topology does not
change over time, in the latter the nodes slowly drift during
time. As long as the nodes remain within transmission range,
the node drifting is captured by the dynamics of the channel
quality metrics used to determine the channel state (GOOD
or BAD) employed in the trust model. In addition, if a new
node A comes into B’s transmission range because of drifting,
B starts to compute A’s trustworthiness as for the other nodes,
as soon as the node is detected as a new neighbor (and vice
versa). In our scenario we do not consider mobile nodes,
such as Autonomous Underwater Vehicles (AUVs), leaving
the study of this type of scenario for future works.

In an underwater environment, directly applying the output
of the watchdog mechanism to compute the trustworthiness of
a node could cause misleading conclusions due to the vari-
ability of the channel described in Section III. Indeed, a result
purely based on the observation of a neighbor without any
distinction on the channel quality could lead to a judgement
related to the channel quality rather than to the actual node
behavior.

In our model, we distinguish when a certain behavior occurs
in GOOD and BAD channel state, weighing the two cases
differently to obtain an opinion about the node’s behavior
according to subjective logic [20]. Considering the channel
model described in Section III, we model the behavior of
a neighbor node through an HMM in which the observable
events are the correct behavior (C) or the misbehavior (M)
of a node and we denote this set as E = {C,M}. For
each state s ∈ S and each observable event e ∈ E , the
probability of observing the event e in state s is defined as
os(e), with the constraint

∑
e∈E os(e) = 1 for each value

of s ∈ S. We emphasize that for a well behaving node, the
values of os(M) and os(C) are related to the probability of
not overhearing the packet transmitted by the neighbor, and

therefore depend on the packet error probability. Consider as
an example a node that has to forward a packet due to the
routing protocol rules: og(C) is the probability of overhearing
a packet transmitted by a legitimate forwarding node in GOOD
channel conditions, and ob(C) is the probability of overhearing
a packet transmitted by a legitimate forwarding node in BAD
channel conditions.

To compute the trustworthiness of a node we use subjective
logic. Subjective logic deals with uncertainty and can be used
to represent an opinion about a given statement (in our case
whether a node can be trusted or not). The opinion is defined as
the tuple o = {b, d, u}, where b, d, u ∈ [0, 1] and b+ d+ u =
1. Specifically, the three terms refer to belief, disbelief and
uncertainty, respectively. The main idea is to update belief,
disbelief and uncertainty based on the outcome, i.e., a correct
behavior or a misbehaviors, of the analyzed nodes. The opinion
depends on the number of misbehaviors m = mb +mg and
correct behaviors c = cb+cg , where mi and ci with i ∈ S are
the number of correct behaviors and misbehaviors observed
by a node in channel state i. Belief, disbelief and uncertainty
can be computed as:

b =
wcgcg + wcbcb

c+m

d =
wmgmg + wmbmb

c+m

u =
(1− wcg)cg + (1− wcb)cb

c+m
+

(1− wmg)mg + (1− wmb)mb

c+m

(4)

where wij ∈ [0, 1] ∀i ∈ {M,C} ∀j ∈ {b, g} are the weights
to use for a correct behavior (C) or a misbehavior (M) in a
GOOD (G) or a BAD (B) channel state.

In addition, the weights used to compute belief, disbelief
and uncertainty can be composed by a fixed part, decided a
priori, and a variable part that takes into account the trend of
the behaviors of the neighbor to adjust the overall weights for
correct behaviors and misbehaviors. Specifically, the weights
related to a misbehavior, in both GOOD and BAD channel,
are defined as

wmi = αw̃mi + (1− α)wvar i ∈ g, b, (5)

where wvar is a function of the behaviors of a neighbor,
whose goal is to grasp some signs about anomalous behavior
(e.g., number of misbehaviors in GOOD channel higher than
number of misbehaviors in BAD channel) that could be the
manifestation of a misbehaving node, and therefore to penalize
that neighbor increasing the weight for each misbehavior.
Similarly, the weights for the correct behavior, in both GOOD
and BAD channel, can be defined as

wci = αw̃ci + (1− α)(1− wvar) i ∈ g, b. (6)

B. Trustworthiness

We define a random variable T to describe whether a node
is trustworthy (T = 1) or not (T = 0). Based on subjective
logic and on the trust model described in Section IV-A,
we can decide if a node is trustworthy by observing belief,
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disbelief and uncertainty. These three values can be differently
combined to infer trustworthiness, e.g., by considering in
different ways the role of the uncertainty. For example, in
the following we will use

T = 1 if b+ βu > d+ (1− β)u
T = 0 otherwise,

(7)

with β ∈ [0, 1]. Based on the HMM we can compute the
probability that a node is considered trustworthy after Nt

observations. We compute

P [T = 1 | Nt] = P [b+ βu > d+ (1− β)u | Nt]. (8)

We define M as the set of all the mg values for which
T = 1, for a given number of misbehaviors in BAD channel
and for a given number of visits to the BAD state (Nb)

M = {mg : b+ βu > d+ (1− β)u} (9)

We remember that the number of visits to the GOOD state
(Ng) can be obtained from the equation Nt = Nb +Ng , and
that Ns = ms + cs with s ∈ S.

The probability in Equation (8) can be computed by con-
ditioning on the number of misbehaviors in the BAD channel
mb and on the number of visits either to the GOOD state (Ng)
or to the BAD state (Nb).

P [T = 1 | Nt] =

Nt∑
Nb=0

Nb∑
mb=0

∑
mg∈M

P

[
mg

∣∣∣∣ Nt,mb, Nb

]
P

[
mb | Nb, Nt

]
P

[
Nb | Nt

]
.

(10)
where mg and mb follow a binomial distribution: mg ∼
Bin(Ng, og(M)) and mb ∼ Bin(Nb, ob(M)), respectively.
Therefore, the trust probability becomes

P [T = 1 | Nt] =

Nt∑
Nb=0

Nb∑
mb=0

∑
mg∈M

(
Nt −Nb

i

)
og(M)i

(1− og(M))(Nt−Nb−i))
(
Nb

mb

)
ob(M)mb

(1− ob(M))(Nb−mb)P

[
Nb | Nt

]
.

(11)

The last step is to compute the probability of visiting
the BAD state Nb times, in a given number of steps Nt

(or equivalently the number of visits in the GOOD state).
We define φs(k, n) = P [k visits to B in n steps | X0 = s]
as the probability of visiting k times the BAD state in n
steps, given that we start in the initial state s ∈ S . We can
recursively compute φs(k, n) exploiting the properties of a
MC by conditioning on the first step

φg(k, n) = Pggφg(k, n− 1) + Pgbφb(k, n− 1)

φb(k, n) = Pbgφg(k − 1, n− 1) + Pbbφb(k − 1, n− 1) ,
(12)

with the initial conditions φs(0, 0) = 1 and φs(k, n) = 0 if
k > n, with s ∈ S. In the first row only the number of steps is
decreased because, starting from the GOOD state, there is no

visit to the BAD state in the first step. On the other hand, in
the second row, given that we start from the BAD state both
the number of remaining visits and the number of steps are
decreased by one. Finally, P [Nb | Nt] can be computed as

P [Nb | Nt] = πgφg(Nb, Nt) + πbφb(Nb, Nt) (13)

C. Variable weights

To compute the set M for which the node is considered
trustworthy, we need to define wvar. If we consider a scenario
with both GOOD and BAD channel states, we define wvar as
a function of the estimated misbehavior probability in GOOD
and BAD channel, pm,g = mg/Ng and pm,b = mb/Nb,
respectively. A GOOD channel should be characterized by
a small number of misbehaviors, while in BAD channel
misbehaviors are more likely to be observed due to the
higher packet error rate. Comparing the misbehavior rate in
GOOD and BAD channel, we can gain some insight about the
behavior of the neighbor. Indeed, a number of misbehaviors
in the GOOD channel comparable or even higher than the
number of misbehaviors in the BAD channel could be the
manifestation of an attacking node, and therefore the weights
for the misbehavior should be increased, while the weight for
the correct behavior should be decreased. We define

wvar =
2pm,g

pm,g + pm,b
if pm,g < pm,b

wvar =1 otherwise.
(14)

Using this definition, wvar is equal to 1 when the misbehaviors
in GOOD channel are much higher than the misbehaviors in
the BAD channel, and close to 0 when there are only few
misbehaviors in GOOD channel as would be expected by a
node behaving normally. This definition needs to be slightly
modified for those scenarios in which the channel quality is
favorable, and thus the channel always remains in GOOD state
(i.e., Nb = 0). In this case, since pm,b cannot be computed,
we consider a target value equal to 0.5, therefore the definition
becomes:

wvar =
2pg

pg + 0.5
if pg < 0.5

wvar =1 otherwise.
(15)

The last step is to find the set M, i.e., the number of
misbehaviors in GOOD channel for which the node can be
trusted, by solving the inequality

b+ βu > d+ (1− β)u . (16)

Substituting the expressions for belief and disbelief defined in
Equation (4), remembering that u = 1−b−d, and considering
that cs = Ns − ms with s ∈ S, we obtain the following
inequality

mg((1− β)wcg + βwmg) +mb((1− β)wcb + βwmb) <

(1− β)wcbNb + (1− β)wcgNg −Nt(1/2− β)
(17)

In addition, we assume equal weights for the correct behaviors
with GOOD and BAD channel, i.e., w̃cb = w̃cg = w̃c and
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therefore wcb = wcg = wc. Considering that Nt = Ng +Nb,
the inequality becomes

mg((1− β)wc + βwmg)+mb((1− β)wc + βwmb) <

Nt((1− β)wc + β − 1/2)
(18)

Substituting Equations (5) and (6) in the previous inequality,
we obtain

agmg + abmb + k1wvar(mg +mb) + k2wvar − k3 < 0 (19)

with the coefficients defined as

ag =α((1− β)w̃c + βw̃mg) + (1− α)(1− β)
ab =α((1− β)w̃c + βw̃mb) + (1− α)(1− β)
k1 =(1− α)(2β − 1)

k2 =Nt(1− α)(1− β)
k3 =Nt(β − 1/2 + α(1− β)w̃c + (1− α)(1− β))

(20)

The last step is to substitute the value of wvar in the two cases
as defined in Equation (14), pm,g < pm,b and pm,g ≥ pm,b,
obtaining

c1m
2
g + c2mg + c3 < 0 (21)

with
c1 =

ag + 2k1
Ng

c2 =agpm,b +
2k1mb + 2k2 + abmb − k3

Ng

c3 =abmb − k3

(22)

with pm,g < pm,b, and

mg <
k3 − k2 −mb(ab + k1)

ag + k1
(23)

with pm,g ≥ pm,b. This inequality holds for the general case
with both GOOD and BAD channel. If we consider the case
with only GOOD channel, the solutions can be obtained by
substituting Nb = 0 (and therefore mb = 0) and pm,b = 0.5.

In addition to variable weights, in principle also different
values of β could be used for different scenarios. As an
example, where the channel remains always in the GOOD state
(Nb = 0) the role of uncertainty would be different since less
uncertainty is expected from a node experiencing good channel
condition. In such a scenario β could be set to a low value
(or at least lower than in the general case with both GOOD
and BAD channel condition), to help discover malicious nodes
performing weaker attacks (e.g., not performing the intended
task only occasionally).

D. Malicious node

In the case of a malicious node the trust model remains the
same, with the only exception of the probability of behaving
correctly or maliciously. An attacker intentionally acts to
damage the network, therefore the probability of misbehaving
is not only related to the channel quality but also to the strength
and type of attack the node is going to perform. If we consider
a malicious node that performs an attack not accomplishing
intentionally its task with a given probability pd, e.g., does

not forward the packet according to the protocol rules, the
probability of behaving correctly becomes

õs(C) = os(C)(1− pd) ∀s ∈ S (24)

and therefore, the probability of misbehaving is

õs(M) = 1− õs(C) ∀s ∈ S (25)

By substituting os(M) with õs(M) in Equation (11) we obtain
the trust probability of an attacker acting maliciously with
probability pd.

V. SCENARIO DESCRIPTION AND PARAMETER SETTINGS

We analyze the trust model, both through an analytical
formulation based on HMM and through simulation with the
DESERT Underwater Network simulator [25].

The HMM described in Section III is characterized by
the transition probabilities Pgg = 0.87 and Pbb = 0.72.
For the theoretical analysis we compare the results with
different probabilities of observing a misbehavior (os(M)) or
a correct behavior (os(C)) for each channel state s ∈ S,
which correspond to different channel qualities experienced
by a node. We assess the trust probability of both a normal
node and a malicious node performing attacks of different
strength, i.e., with different values of pd. In the scenario
with GOOD and BAD channel states we assume a value of
β = 0.7, meaning that uncertainty is mostly considered as
part of the trustworthiness of the node. In the scenario with
only GOOD channel state we consider β = 0, therefore the
uncertainty computed with the subjective logic is considered
as the sign of an untrustworthy node. Indeed, in this second
case, the channel condition is favorable and in principle the
possibility of observing a misbehavior is lower, therefore each
misbehavior needs to be carefully taken into account in the
trust model. A value of β = 0 allows us to better detect
attackers in such a scenario.

As a second step we test the trust model in an underwater
network. We assess our model in topologies similar to the one
depicted in Figure 3. Specifically, the network is composed
by 10 nodes, 9 of them generating data and sending it to the
sink placed in the center of the network using flooding as the
routing protocol. Each node receiving a packet and running
the flooding protocol is expected to forward the data to all its
neighbors, until reaching the sink node. At the beginning of
the mission the count of correct behaviors and misbehaviors
is set to 0, and is updated during the mission. When a node
overhears the packet forwarded by the neighbor a correct
behavior is considered, while if the forwarding is not overheard
within a predefined time interval a misbehavior is counted.
We remark that the observed misbehaviors can in principle
be either intentionally caused by an attacker, or unintended
due to the channel condition. The count of correct behaviors
and misbehaviors will be used to compute the trust of a node
considering Equations (4) and (7). To test our trust model
we select one of the nodes close to the sink to act as the
attacker. Specifically, the attacker does not always forward
the packets received from its neighbor, but drops them with
a given probability pd. In the network simulator the channel
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Fig. 3: Example of topology with normal nodes (blue circles), attacker (red
square) and sink node (black circle).

state is obtained by looking at the Signal to Interference plus
Noise Ratio (SINR) of each received packet or at the noise
level when the node does not overhear the forwarding of a
packet by one of its neighbors. We use two thresholds to
detect the channel state, one for the transition from GOOD
state to BAD state Sth,g , and the second one for the transition
from BAD state to GOOD state Sth,b. The hysteresis is useful
to avoid continuous jumps from one state to the other with
small changes in the SINR value. In our scenario we set
Sth,g = 6.3 dB and Sth,b = 7 dB. In an actual deployment,
mathematical analysis can be performed before the mission
to choose the SINR threshold used to define GOOD and
BAD channel states. The goal is to set the threshold based
on the performance, in terms of false detection and correct
detection probabilities, that best suits the mission needs. The
SINR threshold can be retrieved from the correct reception
probabilities in GOOD and BAD state which can be easily
varied in the mathematical analysis.

To simulate the behavior of a two-state channel model as
that described in Section III, in the simulator we use the
Urick propagation model [45], changing the noise level every
T = 180 s between two values, according to the transition
probabilities of a MC. For consistency, we set the same
transition probabilities used in the theoretical analysis.

In the simulated scenario, each node generates a packet of
24 Bytes every 100 s, on average. The transmission power is
equal to Ptx = 180 dB re µPa, the central frequency used
for the transmission is f0 = 26 kHz and the bandwidth is
B = 16 kHz.

VI. RESULTS

A. Analytical results

In this Section we present the results obtained from the
theoretical trust model described in Section IV. We compute
the probability of correct detection for a malicious node,
i.e., the probability of not trusting the attacker (a node with
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Fig. 4: (a) correct detection and (b) false detection probabilities as a function
of the correct behavior probability for GOOD channel scenario.

pd > 0), and the probability of false detection, i.e., the
probability of not trusting a correctly behaving node (with
pd = 0), after Nt = 150 steps. We computed the correct
detection and false detection probabilities in two different
scenarios: the first one in which the channel always remains
in GOOD state, with the goal of analyzing the trustworthiness
of a node under very favorable channel conditions, the second
one with a more general behavior where both GOOD and BAD
channel states are considered.

Figures 4a and 4b show the correct detection and false
detection probabilities in the scenario with only GOOD chan-
nel. The analysis has been carried out as a function of the
probability of observing a correct behavior og(C) (that is
related to the packet delivery ratio) in a GOOD channel
state and considering different attack strengths (i.e., different
probabilities pd of intentional misbehavior). For each analyzed
channel quality, an attacker behaving intentionally maliciously
with a probability of performing an attack of pd ≥ 0.3 can
be easily identified and marked as an untrustworthy node.
However, when the correct behavior probability og(C) drops
to 0.75, the false detection probability rapidly increases to 0.5,
meaning that well behaving nodes are marked as untrustworthy
half of the time. This is due to the fact that β = 0 is used in the
case of only GOOD channel state, as stated in Section V. This
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Fig. 5: (a) correct detection and (b) false detection probabilities as a function of the correct behavior probability for GOOD and BAD channel scenario

setting indeed highly penalizes misbehaviors since uncertainty
will be only summed to disbelief in Equation (7).

The performance improves if the packet reception probabil-
ity is higher, as is expected for this particular scenario with
only GOOD channel conditions. Indeed, for better channel
conditions the false detection probability remains lower than
0.1 and even close to 0 for a correct behavior probability less
than or equal to 0.85.

Figures 5a and 5b show the correct detection and false
detection probabilities in the scenario with both GOOD and
BAD channel. The analysis has been performed as a function
of the correct behavior probabilities in both GOOD and
BAD channel [og(C), ob(C)], and considering different attack
strengths pd. In this scenario, since the channel quality is lower
than in the previous scenario with only GOOD channel, the
detection of attackers with a low pd becomes more difficult.
Indeed, when pd ≥ 0.5 the attacker is always detected after
150 steps, while for pd ≤ 0.3 the correct detection depends
on the channel quality. An increasing error probability due to
channel losses seems to help in detecting attackers with lower
strength. This is also followed by an increment of the false
detection probability (Figure 5b), however the increment in
the false detection probability in our scenario is limited when
og(C) = 0.6 and always remains lower than 0.2.

B. Simulation results

In this Section we present the results obtained through
simulation of the scenario described in Section V. We assessed
the trustworthiness of the nodes, considering 50 runs for
each of the 20 analyzed topologies, similar to that presented
in Figure 3. Specifically, we considered the trust computed
by each node in the most external set with respect to its
neighbor closer to the sink. Figures 6a and 6b show the
correct detection (for an attacker) and false detection (for a
normal node) probabilities as a function of the number of
transmitted packets and for different drop probabilities pd,
taking into account the results obtained for each run and each
topology. Figure 6a shows the same trend observed with the
theoretical results. We want to highlight that, depending on the
topologies and thus on the actual distance between neighbors,
the performance takes into account both nodes with favorable
conditions (i.e., with only GOOD channel) and nodes with
more unfavorable conditions (i.e., nodes that alternate GOOD
and BAD channel states). For a drop probability pd = 0.2,
the system cannot easily identify an attacker because the
drops caused intentionally by the malicious node can be
confused with the losses caused by bad channel conditions
or collisions with other transmissions. With pd ≥ 0.3 the
overall performance improves, going from a correct detection
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Fig. 6: (a) correct detection and (b) false detection probabilities as a function
of the number of transmitted packets and for different attack strength pd.

probability of 0.7 with pd = 0.3 to a detection of almost
100% with pd ≥ 0.5. On the other hand, Figure 6b shows the
estimated false detection probability for a normal node as a
function of the number of transmitted packets. As expected,
the result does not depend on the drop probability pd of the
attacker. The false detection probability is close to 0.2 at the
very beginning of the simulations, when few packets have been
exchanged, while it decreases to 0.05 when more information
becomes available. In addition, we can observe that the correct
detection probability rapidly converges within 60 transmitted
packets. With this fast convergence shown in the results, slow
environmental condition changes, for example caused by day-
night or tidal cycles, will have little effect on the trust model
not causing the trustworthiness value to continuously change
within short periods.

As mentioned before, this analysis considers all topologies,
therefore it takes into account different channel qualities for
both attackers and normal nodes. For a better understanding of
the behavior of the trust model for different simulated channel
qualities, we plot the estimated correct and false detection
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Fig. 7: (a) SNR and (b) probability of observing a correct behavior as a
function of the distances for low (blue) and high (red) noise level.

probabilities at the end of the simulation as a function of the
distance between the node and its neighbors. Figures 7a and
7b are showing the SNR experienced by a node as a function
of the distance for low and high noise level and the probability
of observing a correct behavior from the neighbor based on the
channel, respectively. Since different distances correspond to
different channel qualities, this allows us to understand the
behavior of the trust model for different channels. Figures
8a and 8b depict the estimated correct and false detection
probabilities, respectively. According to the propagation model
used in the simulator, a node placed at a distance lower than
3 km is always in GOOD channel, since the SNR is higher
than the threshold Sth,g . In this scenario the trend obtained
for the correct detection is similar to the trend observed with
the analytical results with always GOOD channel condition
(Figure 4a), where an attacker with pd ≥ 0.3 is correctly
detected with a probability close to 1. Considering pd = 0.2,
the correct detection probability is very low for closer nodes,
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Fig. 8: (a) correct detection and (b) false detection probabilities as a function
of the number of transmitted packets and for different attack strength pd.

but increases as the distance increases because the packet
losses due to channel errors help in the attacker identification.
At the same time, for a distance lower than 3 km the false
detection probability is close to 0, meaning that the normal
nodes are not wrongly marked as attackers. Nodes within a
range of 3 to 3.1 km can experience both situations, i.e., either
always GOOD channel condition or both GOOD and BAD
channel. In this case attackers dropping packets with pd ≥ 0.5
are always correctly detected, while for an attack strength of
pd = 0.2 and pd = 0.3 the correct detection probability is
0.7. In this range of distances the false detection probabilities
increase up to 0.2, due to those nodes that are always in
GOOD channel conditions but with an increased packet error
rate. When the distance is bigger than 3.1 km the nodes
always experience both GOOD and BAD channel conditions.
Also in this case the trend for correct detection and false
detection is similar to what observed in the theoretical analysis.
For the considered distances, a lower attack strength is more
difficult to detect, therefore the correct detection probability
with pd ≤ 0.3 is lower than 0.5, while it remains close to 1
for pd ≥ 0.5. In this situation the estimated false detection
probability is close to 0.

VII. CONCLUSIONS

In this paper we presented a trust model for underwater
acoustic networks to detect suspicious behaviors of possible
attackers. The main problem in acoustic communication is
to understand whether a misbehavior is due to channel loss
conditions or to a malicious behavior. The dynamic quality
of an acoustic channel can be described through a two-state
HMM and we exploited this characteristic to weigh differ-
ently misbehaviors in GOOD and BAD channel conditions.
We analyzed the trust model both analytically and through
simulations. Specifically, we computed the correct detection
and false detection probabilities for different attack strengths
pd, observing that when pd ≥ 0.5 the malicious node is
always detected, while for lower values of pd in scenarios
with both GOOD and BAD channel states the detection is
more challenging since the intentional misbehavior is difficult
to distinguish from a misbehavior caused by a channel drop.
If the channel quality is more favorable, i.e., with only
GOOD channel, even a value of pd = 0.3 can be detected.
The simulations of the trust model with the flooding routing
protocols confirm the same trend observed with the analytical
results.

As future work, we will extend the trust model by letting
nodes exchange information about their trust level of a node,
thus combining local information with the received informa-
tion and obtain a more accurate result. In addition, we will
design and evaluate countermeasures to exclude the attacker
from the network which will exploit the trust model as a base
for the detection of malicious nodes, and evaluate the trust
model in a scenario composed of both fixed and mobile nodes.
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