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Abstract: The underwater acoustic channel is remarkably dependent on the considered scenario1

and the environmental conditions. In fact, channel impairments differ significantly in shallow water2

with respect to deep water, and the presence of external factors such as snapping shrimps, bubbles,3

rain or ships passing nearby, changes of temperature and wind strength, can change drastically4

the link quality in different seasons and even during the same day. Legacy mathematical models5

that consider these factors exist, but are either not very accurate, like the Urick model, or very6

computationally demanding, like the Bellhop ray tracer. Deterministic models based on lookup7

tables (LUTs) of sea trial measurements are widely used by the research community to simulate the8

acoustic channel, in order to verify the functionalities of a network in certain water conditions before9

the actual deployment. These LUTs can characterize the link quality by observing, for instance, the10

average packet error rate or even a time varying packet error rate computed within a certain time11

window. While this procedure characterizes well the acoustic channel, the obtained simulation results12

are limited to a single channel realization, making it hard to fully evaluate the acoustic network in13

different conditions. In this paper, we discuss the development of a statistical channel model based14

on the analysis of real field experiment data, and compare its performance with the other channel15

models available in the DESERT Underwater network simulator.16

Keywords: underwater acoustic channel; Hidden Markov Model; DESERT Underwater network17

simulations.18

1. Introduction and Related Works19

Wireless communication under the sea is very challenging. Radio frequency and optical signals20

are severely attenuated and therefore unable to cover a great distance, hence their use is restricted to a21

few specific applications [1]. Acoustic signals, instead, can propagate for several kilometers, and, while22

characterized by low bandwidth and high propagation delay, at least enable long range communication23

links, and are considered the most mature underwater wireless communication technology to date.24

For this reason, underwater acoustic networks (UANs) are widely used in both military and civilian25

applications, including, but not limited to, coastal surveillance and monitoring, tsunami prevention26

and oil and gas pipeline inspection. While sea trials are proven to be the best way to evaluate UANs,27

their realization is not trivial, in fact they are very demanding in terms of costs, time, personnel28

and equipment, and very prone to external factors that can cause failures of the trial, not only due29

to equipment issues caused by software faults and hardware damages, but also because of bad sea30

conditions. For this reason, network simulators are often employed for a preliminary evaluation, in31

order to debug the protocol stack before the final sea trial, hence minimizing the probability of software32

faults and having an idea on how the new protocol works if compared to other benchmarks. However,33

in the underwater research community simulations are still not considered to be a valuable tool to34

perform the final evaluation of UANs, as channel models are often unable to accurately describe the35
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time varying behavior of a real acoustic channel [2]. The acoustic channel, in fact, depends on a large36

number of factors. First, changes of temperature, depth of the node and salinity cause a variation of37

the sound speed along the water column, and therefore of propagation of the acoustic signal Second,38

the presence of water currents, wind and mobile nodes causes a strong Doppler effect that affect the39

received signal [3]. Last, noise caused by wind waves, rain, snapping shrimps, bubbles brought by40

tidal inflow, and ship propellers [4] causes the degradation of the signal to noise ratio (SNR). The use41

of realistic channel models, such as the Bellhop ray tracer [5] where a subset of these parameters can42

be included, is computationally demanding and hence restricted to networks with a small number of43

nodes.44

Given the large number of sea experiments performed by scientists in the last 15 years [6–10], a45

wide dataset of time-varying links has been collected, and some measurements are publicly available.46

Data-driven models have gradually been used to predict the trend of channel performance; for example,47

in [11] the authors, considering as features for the model different environmental characteristics, build48

a logistic regression network whose Packet Success Rate (PSR) estimates are quite accurate if restricted49

to the short-term variability of only one of the acoustic link features used to build the regression50

network. In several works [12–14] the authors mapped different modems performance figures of PSR51

versus range in the DESERT network simulator [15]. Although in some cases they have also included52

the performance degradation due to interference, this model can only be used for a preliminary53

evaluation of the network, as the channel variability is not considered and the modem performance54

is assumed constant in time. The ASUNA dataset [6] is a collection of the acoustic link quality time55

evolution observed during many different sea trials carried out by the Haifa University, Israel, the56

University of Padova, Italy, and IMDEA Networks, Spain. These experiment have been performed57

in different locations around Europe and Israel. The authors also show how the time varying links58

stored in the dataset can be used in a Matlab network simulation in order to reproduce the link quality59

evolution experienced during those sea trials. Similarly, in [16] the authors included in the DESERT60

Underwater network simulator the time evolution of the links of the multimodal acoustic mobile ad61

hoc network deployed in [9] and composed of low- and high-frequency modems. They also included62

the impairments caused by interference, and LUTs of the noise variability to test the adaptation of63

different modulation and coding schemes. Although, on the one hand, both the solutions in [6] and [16]64

allow to reproduce the time evolution observed during sea trials, on the other hand they do not allow65

to test different channel realizations.66

During the last decade researchers [17,18] demonstrated that the time evolution of underwater67

acoustic channels can be statistically well characterized with two- and four-state Markov models and68

with a two-state Hidden Markov Model (HMM) [19]. In fact, the nature of the acoustic channel,69

whose error probability often changes during the day due to, for instance, presence of rain, changes70

of wind speed and shipping activity, can be well characterized by HMM. Analyzing real channel71

measurements [6–10], in fact, it is common to observe time intervals with a low PSR alternated by time72

intervals with a high PSR, rather than having an almost constant error probability during the whole73

experiment.74

The evaluation study of which Markov and HMM model best fits the experimental data [18]75

showed that the HMM yields an accurate reproduction of the channel metrics, tracking well long term76

channel behaviors, and making it a good choice for modeling the channel in UANs simulators.77

The aim of this work is to present a statistical model based on the analysis of sea trial data, and78

to evaluate the effectiveness of this model with respect to already existing models. This statistical79

model is included in the DESERT Underwater simulator [15], that includes a wide set of protocols for80

best customizing the underwater network to the needs of a user. The model relies on measurements81

extracted from the ASUNA dataset [20], that presents a number of time series of link quality indicators82

(LQIs), measured during the aforementioned experiments. The main contribution of this article is to83

provide the research community with an open-source framework for underwater network simulations84

where the acoustic channel is modeled with high reliability and low computation complexity.85
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The paper is structured as follows. First, in Section 2 we present the dataset used to infer the86

channel model parameters. Then, in Section 3 we provide the details of the statistical model and87

its implementation in the simulator. In Section 4 we evaluate the performance of our model when88

compared to legacy mathematical models, while in Section 5 we present the results of the simulations.89

Finally, in Section 6 we draw our concluding remarks.
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Figure 1. Topologies tested in the sea trial [6]: topology 1 (a), topology 2 (b), topology 3 (c), topology 4
(d), topology 5 (e), and topology 6 (f).

90

2. Dataset Description91

The statistical model used in this paper is trained using the measurement data of one of the sea92

trials collected in the ASUNA dataset: the Haifa harbor (Israel) test performed in May 2009 [21]. During93

this experiment, 4 meter rubber boats deployed the nodes in six distinct topologies for different periods94

of time. A spatial reuse TDMA protocol (each device had a 5 second slot dedicated for transmission)95

was tested, and the transmission rate of the modems was 600 bps without channel coding, using a96

B-PSK signal modulated by direct sequence spread spectrum (DSSS), which was created using a gold97

sequence-based pseudo random sequence of 128 chips, centered at 25 kHz, and bandwidth 5 kHz. The98

modem prototype was composed of ITC transceivers, a National Instrument data acquisition system,99

and a laptop for signal processing. The transceivers were deployed at a depth of 4 m.100

The LQI observed during the trial is the Bit Error Rate (BER), defined as the ratio between101

the number of erroneous bits and the total number of transmitted bits. The dataset provides a set102

of time-varying BER per-link values collected into six Topology Matrix Information (TMI) (one for103

topology). A TMI consists of an NxN matrix, with N the number of nodes in a topology, where the104

entry (t, i, j) represents the BER value for the link from node i (transmitter) to node j (receiver) at time105

t: the time interval between two subsequent measurements is 5 s, at each measurement BER and GPS106

position (in UTM coordinates) of each node are recorded. During the sea trial, Topology 1 was tested107
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for 30 minutes, Topology 2, 3, 4 and 5 were tested for 60 minutes while topology 6 was tested for 90108

minutes. Table 1 provides the experiment details.109

Table 1. Haifa Harbor sea trial details

Location, Date Nodes Topologies Collection Time
Haifa Harbor, 05/09 4 6 30-90 minutes

Rate LQI Total Time Interference
Once every 5 s BER 6 hours No

During the experiment the LQI of each link was varied in time. In some of the links the BER was110

very small for almost all the time, while other links had a higher error rate.

(a) (b)

(c)

Figure 2. Examples of BER CDF fits for the stable link from node 4 to node 2 observed in topology 2
(a), the average link from node 3 to node 2 observed in topology 2 (b), and the challenging link from
node 1 to node 3 observed in topology 1 (c).

111

For instance, in Figure 2 we can observe the BER Cumulative distribution function (CDF), fitted112

with an exponential distribution, of three representative links observed during the trial.113

Specifically, Figure 2a presents the CDF of the very stable link from node 4 to node 2 observed in114

topology 2, whose BER is lower than 0.02 for 90% of the time. Figure 2b, instead, presents the CDF115

of the link from node 3 to node 2 observed in topology 2: in this case the BER is slightly higher than116

in the previous case but never exceeds 0.06. Finally, Figure 2c depicts the link from node 1 to node 3117

observed in topology 3: this link has a BER that is definitely higher than the other two links.118

3. Three-State Hidden-Markov Model119

In this section we analyze the data measurements in order to obtain the statistic characterization120

of the acoustic channel experienced during the sea trial (Section 3.1) and compute the transition121

probabilities of the three-state HMM used to model the channel variability (Section 3.2). We also122

present the two-state HMM used as benchmark (Section 3.3). We analyze only the time evolution of123
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the acoustic links of the nodes in communication range of each other, as nodes that are not in range124

simply did not exchange any message and their analysis is therefore trivial. Although the analysis125

presented in this paper focuses on topologies 1 and 2, in the new release of DESERT we also included126

the link evolution statistics of topologies 3, 4, 5 and 6.127

3.1. BER Thresholds128

In order to analyze the link quality, we need to define when a link is assumed to be in “good”,129

“medium” and “bad” state. For this reason, we set the following thresholds to the observed BER:130

• Good state: BER < 0.012;131

• Medium state: 0.012 < BER < 0.025;132

• Bad state: BER > 0.025.133

With these thresholds, considering a Hamming(7,4) Forward Error Correction (FEC) and a packet
size of 16 bytes without FEC (i.e., 28 bytes with FEC), the resulting Packet Error Rate (PER) can be
computed analytically as follows. If we define the probability of having no more than one error in 7
bits as

Psucc = (1− BER)7 + 7 · BER(1− BER)6, (1)

we can obtain
PER = 1− (Psucc)

224/7. (2)

To check that these results are correct we verified them via simulation. Given a topology, a link and134

its empirical BER observed at a fixed time tx, a sequence of 224 uniform random values in [0, 1] are135

extracted. Each of the values has been compared with the respective BER empirical value to generate136

a logical array with “0” in the cells where the number generated by the RNG was greater than the137

BER value, and “1” in the other positions. This array can be interpreted as our 224 bit packet, where138

the bits set to “1” are wrong and the bits set to “0” are correct. Therefore, since we have adopted139

Hamming(7,4), the packet is scanned with a 7-bits step: since Hamming(7,4) cannot correct more than140

one error every 7 bits, whenever the sum of the bits in a block is greater than 1 we mark the block141

as compromised and the whole packet is considered corrupted. The process is iterated for N = 1000142

times and the PER value is given by the number of corrupted packets divided by N.143

We can observe in Figure 3 the PER-BER relationship obtained analytically (red line) and via144

simulation (blue crosses) for the three links presented in Figure 2.145

With the BER thresholds presented above, the corresponding PER thresholds follow:146

• Good state: PER ≤ 0.09;147

• Medium state: 0.09 < PER ≤ 0.32;148

• Bad state: PER > 0.32.149

We can finally observe that the stable link from node 4 to node 2 observed in topology 2 is 95% of150

the time in Good or Medium states, the average-performance link from node 3 to node 2 observed in151

topology 2 is only 80% of the time in Good or Medium states, and the challenging link from node 1 to152

node 3 observed in topology 1 is in Bad state 45% of the time.153

With these fits, we can compute the generic probability that a link is in one of the three-states.154

Nevertheless, this is not enough to model the variability of the channels.155

3.2. Transition Probabilities156

157

From a visual inspection of the link BER time evolution we noted that, grouping the data on a
per-state basis, a link in a state i is more likely to remain in that state in the successive time slot, rather
than jump to another state. Once this was verified, we decided to model the PER time evolution of a
generic link as a three-state Markov chain (Figure 4), with the three states S = {G, M, B} that stand for
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(a) (b)

(c)

Figure 3. PER vs BER values considering a packet with 16 bytes payload and Hamming(7,4) FEC for
three different links: the “Good" link from node 4 to node 2 observed in topology 2 (a), the “Medium"
link from node 2 to node 2 observed in topology 2 (b), and the “Bad" link from node 1 to node 3
observed in topology 1.

Figure 4. Three-state channel model.

“Good", “Medium", and “Bad", respectively. Specifically, if we denote as X0, . . . , Xn, . . . XN a sequence
of random variables where Xi takes values in the set S of the three states, P(Xn+1 = j|Xn = i) is the
transition probability from state i to state j at step n. Additionally, by the Markov property, we have that:

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P(Xn+1 = in+1|Xn = in), (3)
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which can be interpreted as the fact that, if the current state Xn = in is known, the probability of158

P(Xn+1 = in+1) does not depend on the previous states. If the transition probabilities do not depend159

on n but only on i and j, the Markov chain is homogeneous and we may compute every joint probability160

knowing only the initial distribution of the states p(0)i = P(X0 = i) and the values of pij, where:161

pij = P(Xn+1 = j|Xn = i), ∀n. (4)

Exploiting matrix calculus, since we knew the frequencies of the BER values of each link, we162

found the transition matrices P = (pij), which have only non negative elements, are row-normalized to163

1 and, in our case, have a size 3x3. In Figure 5 we show the matrix charts presenting the transition164

matrices for the three links discussed so far.165

A relevant result is that, given the transition matrix Pn at time n, it is possible to compute the166

t-step transition probabilities by means of matrix exponentiation:167

P(Xn+t = j|Xn = i) = (Pt)ij, ∀n ≥ 0. (5)
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Figure 5. Examples of transition matrices: transition matrix P of the links from node 4 to node 2
observed in topology 2 (a), from node 3 to node 2 observed in topology 2 (b), and from node 1 to node
3 observed in topology 1 (c).
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The averaged values of the BER in the three states for the links we are considering are reported in168

Table 2.169

Table 2. Average BER values, three-state HMM

avg good avg medium avg bad
Topology 2, link 4→2 0.0051 0.0174 0.0281
Topology 2, link 3→2 0.0048 0.0165 0.0338
Topology 1, link 1→3 0.0066 0.0184 0.0448

3.3. Two-State Hidden-Markov Model170

As benchmark of the three-state HMM presented in Section 3, we now present the more used171

two-state HMM (Figure 6).172

Figure 6. Two-state channel model.

In the two-state model, we define a cumulative Bad state b′ grouping together the Bad and the173

Medium states used in the three-state model. The probabilities of successful reception given a channel174

state are computed link-wise by taking the average PERs in each state. The transition probabilities,175

instead, are computed starting from the three-state model transition probabilities as:176

• pgb′ = 1− pgg,177

• pb′g =
pmg ·pm+pbg ·pb

1−pg
,178

• pb′b′ = 1− pb′g,179

where pgg is the probability of not having a transition at time n + 1 when a link is in the Good180

state at step n for the three-state HMM and ps, s ∈ {g, m, b} is the generic probability a link finds itself181

in the Good, Medium or Bad state respectively.182

While with the three-state HMM the transition matrix Pn at step n needs to be computed with183

matrix exponentiation as presented in eq. (5), in the simple two-state model the transition probabilities184

at step n can be obtained via the closed formula [22]:185

Pn =
1

pgb′ + pb′g

(
pb′g pgb′

pb′g pgb′

)
+

(1− pgb′ − pb′g)
n

pgb′ + pb′g

(
pgb′ −pgb′

−pb′g pb′g

)
. (6)

In Figure 7 we report the transition matrices in the two-state HMM for the links under analysis.186

Table 3 shows the relevant averaged BER values for the two-state HMM.187

Table 3. Average BER values, two-state HMM

avg good avg bad
Topology 2, link 4→2 0.0051 0.0193
Topology 2, link 3→2 0.0048 0.0267
Topology 1, link 1→3 0.0066 0.0395
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Figure 7. Examples of transition matrices for the two-state HMM: transition matrix P of the links from
node 4 to node 2 observed in topology 2 (a), from node 3 to node 2 observed in topology 2 (b), and
from node 1 to node 3 observed in topology 1 (c).

4. Model Implementation and Simulation188

In order to evaluate the models presented in the previous sections, we implemented the two- and189

three-state HMM in the DESERT Underwater framework [15], an open-source underwater network190

simulation and experimentation tool publicly available in [23]. Notably, the DESERT Underwater191

legacy physical module, called UWPhysical, models the path-loss with the Urick and Thorp formulas,192

and computes the signal to noise ratio using the model presented in [2]. Although this model is193

largely used by researchers, it does not address well the variability of the acoustic channel. Therefore,194

we implemented from scratch two new physical layers, one called UWHMMPhysical that uses the195

two-state HMM described in Section 3.3, and one named UWHMMPhysicalExtended that uses the196

three-state HMM presented in Section 3. In both physical layers we included the statistics of each197

link using the so called link-stats objects, and let the physical layer compute the probability that198

a packet is correctly received at a specific moment, hence providing a per-link channel variability.199

The link-stats objects are independent of each other: in the case of near nodes that share the same200

channel, the same link-stats object can be used to model the channel variability in the same way:201

in the case of the sea experiment considered in these simulations, the links between the nodes are202

considered independent, hence a different link-stats object is used to model the channel variability203

between every pair of nodes.204

The most relevant difference between the two- and three-state HMM is the way the transition205

probabilities are computed. As explained in Section 3.3, the two-state HMM can be computed via a206
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closed formula, while for the three-state HMM the transition probability can only be computed by207

means of matrix exponentiation. This implies that the exponentiation has to be performed efficiently,208

so that even with a big exponent n, the complexity is limited and not growing without bounds. Given209

that n monotonically increases during the simulation, it is not necessary to compute Pn starting from210

the initial transition matrix P0, as this would cause a degradation in performance. Specifically, we save211

the aforementioned matrix each time we compute it, so that we can operate conveniently on the last212

available Pk and compute Pn with a number of exponentiations equal to n− k, that is strictly less than213

n. As a result, the computation time of a simulation using the three-state model is not much longer214

than the same simulation relying on the legacy physical model or on the two-state HMM.215

4.1. Simulation Settings216

In our simulations we analyze the system behavior with the nodes placed in the positions217

presented in topology 1 (Figure 1a) and topology 2 (Figure 1b). The simulation lasted 18000 s, and we218

switched from topology 2 to topology 1 in the middle of the simulation (i.e., at time 9000 s) by adding219

the link from node 1 to node 3 and changing the packet success probability per link and the transition220

probabilities of every link accordingly. The behavior of the three communication stacks depicted in221

Figure 8 is analyzed. All stacks use a constant bitrate application layer, static routing with all nodes222

transmitting to their 1-hop neighbors and a time division multiple access (TDMA) MAC layer. The223

first stack (Figure 8a) uses the legacy DESERT physical layer, the second stack (Figure 8b) uses the224

two-state HMM-based physical layer and, finally, the third stack (Figure 8c) employs the three-state225

HMM-based physical layer.226

4. CBR

3. STATICROUTING

2. TDMA

1. UWPHYSICAL

UnderwaterChannel

(a)

4. CBR

3. STATICROUTING

2. TDMA

1. UWHMMPHYSICAL

UnderwaterChannel

(b)

4. CBR

3. STATICROUTING

2. TDMA

1. UWHMMPHYSICALEXTENDED

UnderwaterChannel

(c)

Figure 8. The three communication stacks compared in simulation, all composed of a constant
bitrate application layer, static routing, and TDMA, and a different physical layer: Uwphysical (a),
UWHMMPhysical (b) and UWHMMPhysicalExt (c).

The network is composed of 4 nodes and each node generates 28 bytes packets every 60 s.227

Bandwidth and carrier frequency are set to 5 kHz and 25 kHz, respectively, in order to best simulate228

the behavior of the modems used in the field experiment presented in Section 2. The simulation229

parameters are summarized in Table. 4.230

The TDMA MAC is configured with a frame duration of 8 s, equally divided between the four231

nodes that have a time slot of 2 s each to transmit their packets. A guard time of 0.8 s is used to avoid232

interference caused by the propagation time and to consider possible synchronization errors between233

the nodes.234
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Table 4. Simulation parameters

Nodes Pkt Size Tx Duration Tx Power
4 28 B 18000 s 165 dB

Frequency Bandwidth Bitrate Cbr Period
25 kHz 5 kHz 600 bps 60 s

At the end of the simulations we observed the performance of each link of the network by235

computing PER and throughput averaging over 50 simulation runs and presenting the 95% confidence236

interval (CI).237

5. Simulation Results238

PER and throughput of each link are presented in Figures 9 and 10, respectively. Figure 9 compares239

the PER per link obtained with the three physical layers described in Section 4.1 with the PER measured240

during the sea trial (green diamond). Uwphysical (Figure 9a) is extremely optimistic and provides
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Figure 9. PER results yielded by the simulations (bars) with respect to Haifa Harbor measurements
(green diamond) for UWPhysical (a), UWHMMPhysical (b) and UWHMMPhysicalExt (c).

241

a very low PER. In particular, with the considered settings the PER of the links is equal to zero up242

to a transmission range of 1.1 km, and increases to 1 when the distance between nodes is more than243

1.6 km. This implies that the link connecting the two farthest nodes (node 1 and node 3, that are 1.2 km244

from each other) has a non-zero PER, but still the real values are underestimated. Conversely, the245

PER obtained both with the two-state (Figure 9b) and with the three-state (Figure 9c) models is very246

similar to the one observed in the sea trial, with the three-state model having a PER that matches247

almost perfectly (within the CI) the experimental one (depicted with green diamonds), definitely248

outperforming the other two models.249

Similarly, the throughput observed with Uwphysical (Figure 10a) is almost the same for all of the250

links, and is equal to 3.7 bps: only in the link between node 1 and 3 the throughput is approximately251

1.85 bps, as that link was removed at the simulation time 9000 s, when the network topology was252



Version July 20, 2022 submitted to Electronics 12 of 15

changed from topology 1 to topology 2. With a higher PER per link, the throughput observed with the253

two- and three-state HMM is significantly different link by link, presenting results that are definitely254

closer to those that can be observed during a sea experiment.255
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Figure 10. THR results yielded by the simulations with respect to Haifa Harbor measurements for
UWPhysical (a), UWHMMPhysical (b) and UWHMMPhysicalExt (c).

Finally, we report some plots showing the variability of throughput in time (i.e., computed every256

300 seconds) for the links from node 4 to node 2 and from node 1 to node 3, and again we see how257

optimistic the results obtained using the simplest PHY module are. We can observe the jump at258

9000s for the link 1 → 3, due to the switch from topology 2 (where the link was not in place) to259

topology 1. Besides, the values for the throughput are constant for the UWPhysical module, but for260

the links 1 → 3 and 3 → 1, which are the only ones having a PER greater than zero. Conversely,261

the throughput obtained with the two HMMs models is definitely lower, due to the higher PER, and262

has a higher variance, well characterizing the channel variability. While we could directly compare263

the PER obtained in simulation with that experienced during the experiment, we could not perform264

the same operation for the throughput, as the simulation used an application layer generating traffic265

with different rate than the one used during the sea trial. This tool can be used to test protocol stack266

configurations that are different from the one used in the experiment, exploiting the measures obtained267

during the sea trial to model the packet error rate time evolution and observing as a result other268

performance indicators, such as the throughput per link.269

6. Conclusions270

In this paper we presented two statistical models to characterize the underwater acoustic channel271

in network simulators, matching well the results observed during sea trials. Specifically, we were able272

to develop two precise channel models for underwater communications starting from the analysis273

of real field experiment data retrieved from ASUNA. The models are based on two- and three-state274

Markov chains and have two main advantages: first, they guarantee a realistic channel modelling with275

respect to the results observed during sea trials; second, they are not particularly computationally276

demanding. Indeed, while for the two-state HMM the PER can be simply computed with a closed277
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Figure 11. “Instantaneous" throughput values yielded by UWPhysical module from node 1 to node 3
(a) and from node 4 to node 2 (b).
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Figure 12. "Instantaneous" throughput values yielded by UWHMMPhysical module from node 1 to node
3 (a) and from node 4 to node 2 (b).
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Figure 13. "Instantaneous" throughput values yielded by UWHMMPhysicalExtended module from node
1 to node 3 (a) and from node 4 to node 2 (b).

formula, for the three-state HMM the PER can be computed iteratively, starting from the last PER278

computed during the ongoing simulation. The two models revealed themselves to be adaptable to279

multiple configurations and flexible. Furthermore, they have both been extensively tested after having280

been implemented in the DESERT simulator and they have been compared with the existing legacy281

channel model already available in the simulator. The performance obtained with the two models282

were solid and proved their reliability, with the three-state HMM slightly outperforming the two-state283
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HMM, at the cost of a small increase in complexity. Possible future work may consist in investigating284

models with an increased number of states (i.e., more than 3), and to study the tradeoff given by the285

increased computational requirements and the fidelity of the results. Another aspect that deserves a286

specific investigation is how this channel model can be applied to mobile networks, e.g., by extending287

the number of states or including a penalty factor due to distance, speed and acceleration. This aspect288

is not trivial as the increase of a node speed does not cause only a strong Doppler effect, but also a289

strong acoustic noise caused by propellers and engine [24].290
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