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Abstract—Shark attacks are a rare but ever-present danger
for swimmers and surfers in some regions of the world, and the
threat of sharks is embedded in popular culture. Traditionally,
shark attack mitigation involved the culling of massive num-
bers of sharks, which has significant environmental and ethical
downsides. More recent systems for mitigating the risk of shark
attacks involve the manual or automated detection of sharks
close to the shore, alerting water users to the potential danger
when it occurs and evacuating the water if the shark gets too
close. In this work, we present the design of a Shark Warning
Acoustic Network (SWAN) that exploits underwater acoustic
sensing and communication to automate the spotting, providing
a highly accurate and relatively low-cost alternative to visual
spotting. We analyze the performance of the SWAN in terms
of communication performance and accuracy in alerting water
users to dangerous situations, and compare different medium
access schemes to identify the most effective network design.

Index Terms—Value of Information, Underwater Acoustic
Networks, Shark Warning Systems.

I. INTRODUCTION

While shark attacks are still a rare occurrence, the recorded
instances in a series of worldwide hotspots, which include the
Caribbean, Australian and South African coasts, have been
increasing due to a variety of factors [1]. The habitats of
shark populations might be shifting towards more populated
areas, due to the changes in prey abundance and warm
currents caused by climate change. In addition, the continued
development of seaside tourist and residential settings, along
with the growth of aquatic sports and tourism, is boosting
the number of recreational swimmers, further increasing the
likelihood of an encounter with a shark.

Traditional mitigation strategies, which involved the culling
of massive numbers of sharks, are no longer acceptable due to
their ecological and ethical toll. In this context, early detection
of sharks as they approach the shore can be critical: the success
of the Shark Spotters program in South Africa [2], which
used visual and auditory alarms to warn swimmers of shark
sightings by observers placed on vantage points next to the
beach, shows that coexistence is possible even in dangerous
areas, with the proper precautions.

Over the past few years, the research on shark detection
has mostly focused on expensive aerial observations, either
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manned or through the use of drones [3]. These systems are
expensive and require significant human effort, and suffer from
limited effectiveness in poorer visibility conditions, e.g., due to
insufficient lighting or to wave activity. On the other hand, the
detection and location of sharks through active or passive sonar
is a common practice in ethological research, and has proven to
be effective in determining the presence, location, and species
of sharks [4]. The deployment of an Underwater Acoustic
Sensor Network (UASN) [5] dedicated to this task would
mitigate the issues of aerial surveillance, reducing operational
costs and providing a reliable, automated platform for shark
detection.

However, one of the main challenges in UASN deployment
is communication, as the underwater propagation environ-
ment is uniquely harsh. Radio frequency communications
are possible only over very short distances, so that acoustic
communications have to be used in most practical scenarios,
as the UASN acronym suggests. The low propagation speed
of sound yields much longer signal propagation times than
in common radio systems, and complicates the design of
underwater communication protocols, which often need to be
customized for the targeted application scenario. In particular,
to the best of our knowledge, there are no designs for a precise
and low-cost shark warning UASN.

This work addresses this gap by proposing an analysis of
the trade-offs and the possible ways of measuring the accuracy
of a Shark Warning Acoustic Network (SWAN). We define a
Value of Information (VoI) function to assess the performance
of the system in terms of reducing the danger to water users
by giving them timely warnings of sharks, as well as avoiding
false alarms. We will hence consider different Medium Access
Control (MAC) schemes to tailor the network design to the
application, measuring both traditional communication Key
Performance Indices (KPIs) and VoI measurements. Capital
Expenses (CAPEX) and Operational Expenses (OPEX) are
two other important parameters in designing such a network:
underwater sonar models can be extremely expensive, and the
goal of this work is to design a practical, low-cost SWAN.

The rest of this paper is structured as follows: Sec. II
presents the various aspects of the SWAN design, including
the sonar detection system, the metrics used to determine the
accuracy of the warnings, and the basic communication setup.
It also presents a deeper analysis of the communication sys-
tem, including a discussion of possible MAC configurations.
Sec. III describes the evaluation scenario and the performance
of these configurations, and finally, Sec. IV concludes the
paper and presents some avenues of potential future work.
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Fig. 1: Shark warning system.

II. MITIGATION SYSTEM DESIGN

Following the approach from the Shark Spotters pro-
gram [2], we design a shark spotting system with different
warning levels based on the proximity of the shark. As the
shark alarm levels increase, water users are alerted with visual
and auditory signals, i.e., flags showing the levels of danger
and amplified announcements. They are then encouraged to
move closer to the shore as the shark approaches, so as to
maintain a safe distance and ensure that evacuation can be
conducted quickly. As the highest warning level is reached,
a siren sounds repeatedly, encouraging all users to leave the
water as quickly as possible.

The final goal of our system is to leave enough time for the
users to evacuate the water and, therefore, its design strongly
depends on shark mobility. The average speed of white sharks
in coastal areas is relatively low, below 2 m/s [6]. However,
shark movements are affected by multiple factors, e.g., the
presence of schools of fish, and the top reported speed of
a white shark in pursuit of a prey is about 12 m/s [7]. If
we consider a speed of 3 m/s, a shark would be able to
swim about 360 m in 2 minutes: this is a reasonable time for
evacuation if all water users have already been gathered less
than 50 m from the shore after previous alarms. According to
these assumptions, we make the highest alert area start 400 m
from the shore.

A. Shark Attack Mitigation Systems

Existing shark attack mitigation systems can be divided in
two main categories, i.e., deterrence and spotting systems.
The first family of systems includes traps and nets, which
are used to catch the sharks at a safe distance from the shore
(usually 500 m or more) and release them in open water. The
most recent development is the use of smart drumlines [8],
which can proactively alert coast guard boats if a shark has

been caught, limiting the animal’s time in the trap. However,
deterrence methods have a significant impact on the shark
population, in terms of stress and risk of injury, and are
regarded as invasive methods [3].

On the other hand, spotting systems are not invasive, as
they attempt to identify the presence of sharks and evacuate
water users until the danger has passed, without directly af-
fecting sharks or other marine animals. Spotting systems using
humans with binoculars [2] or remotely guided drones [3]
have been tested over the past few years with relatively good
success. However, there are two significant issues with current
spotting systems: the first is that they are entirely visual, and
depend on the water being relatively calm to successfully see
the sharks swimming underwater, and the second is that they
are work-intensive. Human spotters or drone operators need
to be available at all times, increasing the OPEX significantly
with respect to an automated system. We can then consider
a system that can spot sharks automatically and under any
weather and sea conditions: in order to do so, we need to
place imaging sonars underwater, where the effect of waves
is limited, and set up a communication system that can relay
the position of detected sharks to the shore.

B. Sonar Sensing

Multibeam imaging sonar devices [9] can provide several
frames per second, but their cost is at least 10 times the price of
simpler mechanical imaging sonars. A low power 120◦ Tritech
Gemini multibeam imaging sonar [9] has been used in [10] to
successfully detect sharks at least 1.4 m long up to a range of
50 m, but using these devices in a dense network such as the
one presented in Fig. 1 will require a very high deployment
price.

While mechanical imaging sonar can be acquired at a
relatively low price (e.g., the Ping360 [11] costs less than
2000 $ and has a power consumption of 5 W), their main



disadvantage is the low scan speed, that depends on the
resolution and the range. For instance, in order to provide
a range resolution of 4 cm at 50 m, the Ping360 takes 35 s to
perform a complete 360◦ scan. While the company declares
that a new software update will lower the scanning time, they
need to transmit 400 beams and wait at least 0.067 s for
each beam to be reflected back to keep the same resolution
and range, given that they have a scanning step of 0.9◦ and
considering a speed of sound of 1500 m/s. Consequently, even
with the most efficient implementation, the physical lower
bound to the scanning time will be 26.8 s. In order to lower
the scanning time of a mechanical imaging sonar, we can use
a lower scanning resolution. For instance, the Tritech Micron
mechanical scanning sonar [9] has a “very fast” configuration,
used for quick object search, which reduces the scanning time
by a factor of 4, but degrades the angular resolution from less
than 1◦ to 3.6◦. In this case, a circular area with radius 50 m
can be scanned in 6.7 s. This would result in the detection of
approximately 3 m long sharks at 50 m.

If we consider a maximum scanning range of 50 m, we can
then deploy the devices in front of the beach. Fig. 1 shows
a map of the deployment: the first 200 m from the shore can
be used by swimmers and surfers, but the maximum allowed
distance from the shore is progressively decreased to 50 m
as a shark gets closer, and a siren sounds immediately if it
enters the high risk area, i.e., gets closer than 400 m from
the beach. This gives water users at least 2 minutes to reach
the shore, assuming that the speed of the shark is lower than
3 m/s [6] and that its presence is immediately detected as it
enters the high risk area. The sonar nodes are placed so as to
cover a monitoring area that goes from 400 m to about 650 m
from the beach: this should give ample time to the system for
detecting the shark before it approaches the high risk area,
allowing beach guards to gradually raise the warning level as
sharks get closer.

The sonar nodes are placed in 4 rows, at a distance of
70 m. The closest row is placed at 430 m from the shore,
so as to cover the area up to 400 m. Nodes in a row are
placed at a distance of 80 m from each other, and rows
are staggered by 40 m, so that the three closest nodes can
form an equilateral triangle with an 80 m side, covering the
whole space with their sonars. The distances between nodes
are included in Fig. 1. In order to avoid acoustic interference
between neighbor nodes, we assume the nearby sonar to use a
different central frequency, either using a tuneable sonar [9],
that can select a central frequency between 500 kHz and
900 kHz, or different sonar models from different vendors [9],
[11]. In any case, the acoustic signal generated by the sonar
does not interfere with the communication system, as all
imaging sonars described in this section use frequencies above
500 kHz.

C. Effectiveness Metrics

The first and foremost effectiveness metric for our warning
system is the accuracy of the positioning of the shark: if the
control station on shore makes a large error in identifying the
shark’s distance from the shore, it might cause a significant
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Fig. 2: Alarm level as a function of the distance of the shark from the shore.

danger for water users. The estimated distance x̂ should be as
close to the real position x as possible. However, not all errors
are the same: underestimating the distance of the shark from
the shore, i.e., thinking that the shark is closer than it really
is, may cause annoyance and worry among swimmers, but
will not result in any significant danger. On the other hand,
overestimating that distance, i.e., thinking that the shark is
farther away than it really is, might cause delays in clearing
the water and an increased risk of shark attacks.

Accordingly, we define an alarm function and distinguish
between two types of errors, as Fig. 2 shows:

• Type I errors, or false positives, happen when the esti-
mated position of the shark is closer to the shore than
the real one;

• Type II errors, or false negatives, instead occur if the
shark is closer to the shore than its estimated position,
generating a potential risk for water users.

We use the parameters α and β to control the weight of
Type I and Type II errors in the final performance figures,
respectively. We define a quadratic alarm function, which
gives a larger weight to movements closer to the high risk
area: errors in this situation, particularly if Type II, present
a much higher risk for water users, and should be weighted
accordingly. As Fig. 2 shows, the overall risk factor can go
from 0 (corresponding to no sharks within the 650 m line) to
1 (corresponding to the presence of one or more sharks in the
high risk area). We can also consider a quantized version of
the risk factor, represented by the colored areas in the figures,
which can be used to give visual and auditory warnings to
water users: following the model in [2], we can use different
flag colors and auditory signals to indicate the risk, allowing
water users to select the level of risk they are comfortable with
and attracting their attention if they need to clear the water
quickly. Accordingly, the effect of any error (including both
Type I and Type II) on the actual performance of the system
will be limited, as long as the real and estimated positions
are both in the same colored area. For this work, we chose
a quantization step of 1/3, resulting in 5 different flag colors,
including the red flag, which represents a risk factor of 1, and
the green flag, which represents a risk factor of 0.



TABLE I: List of components and cost of the network deployment for 1 km
of coastline.

Component Cost/unit (e) n◦unit Total cost (e)

Imaging Sonar [11] 2 000 48 96 000
Ahoi modem 700 48 33 600
Raspberry Pi Zero 10 48 480
Waterproof enclosure [11] 100 40 4 000
Batteries (1 day) [11] 290 40 11 600
Gateway buoy 1 500 8 12 000

Overall cost 127 440

D. Communication and tracking system

The nodes also need to be able to communicate with each
other, so they are divided into clusters of 6 nodes, which are
represented with different colors in Fig. 1. We consider the
use of the ahoi [12] low-cost acoustic modem, operating in
the bandwidth between 40 and 75 kHz and able to transmit
up to 150 m with a datarate of 200 bps. At this range, even
the farthest node in a cluster is in range of the cluster head,
which is indicated in red in Fig. 1. In order to communicate to
the shore, the cluster heads are equipped with Fondriest data
buoys, which usually have radio frequency wireless modems
with sufficient range and capacity to transmit the data to
the shore, batteries, and a small solar panel to recharge
them [13]: equipping every node with a buoy would not only
be prohibitively expensive (their price starts from 1500 EUR),
but also limit the possibility to navigate in that area with ships
and vessels, so using clusters of 6 nodes can significantly
reduce the cost of the system without negatively affecting the
shipping activity in that area.

In addition to imaging sonar and acoustic modem, each
submerged node is composed of a low power processing unit,
such as a Raspberry Pi Zero, a waterproof enclosure [11] and
a lithium battery. Specifically, with a 14.8 V/15.6 Ah battery,
we can ensure the operation of the network for several days.

Overall, the system will require 48 nodes per km of
coastline, which would correspond to a CAPEX lower than
130 ke at current prices. However, sensors are long-lived
and require limited maintenance, only requiring periodical
battery recharges or replacement, and even these can be
eliminated with the adoption of soon-to-be-available wave
energy harvesting devices [14]. While the initial CAPEX are
significant, OPEX are extremely low, particularly when com-
pared to shark-spotting systems that require constant human
surveillance or aerial drones (also remotely controlled by
human operators).

As the sonar requires 6.7 s to perform a full 360◦ scan, the
tracked position can only be updated with that time granular-
ity; additionally, the sonars cannot detect sharks farther than
50 m. Each packet is generated by the UwTracker application
layer and contains the shark’s 3D position, its velocity, and
the tracking measurement timestamp. The overall packet size
is 32 B, including a 2 B header containing the source and des-
tination addresses. At the cluster head nodes, received packets
are forwarded through the radio interface to the control station
on the shore, which stores the information, along with the

corresponding packet reception timestamp, and uses it to track
the shark by estimating its most recent position and heading.
Sensors that transmit to the same cluster head cannot transmit
simultaneously, as the interference would prevent either packet
from being received correctly. UwTracker generates packets
only when the shark is detected, and the MAC configuration
impacts the frequency and delay of packet transmission. We
consider two different MAC schemes, which have different
benefits and drawbacks:

• Round Robin (RR): this system prevents packet collisions
by assigning non-overlapping time intervals to transmis-
sions of nodes that may interfere with each other. As
the bitrate of the acoustic links is extremely low, and
the low propagation speed of sound requires long guard
intervals between transmissions, nodes in an RR system
can transmit approximately one packet every 9 s (the time
frame is divided into 5 time slots as the packet duration
is 1.3 s and a guard time of 0.5 s is used to prevent
collisions due to propagation delay and to account for
time synchronization errors).

• ALOHA: in this scheme, sensors can send up to one
packet every 3 s, but risk destructive interference in case
of overlapping transmissions by in-range nodes. In order
to reduce the risk of collisions, an initial random back-off
time of up to one second is used by each node before
each transmission. This scheme relies on the relative
rarity of shark sightings, since at most 2 sensors from
the same cluster can detect the same shark at the same
time, excluding the cluster head (which never transmits
over the underwater acoustic interface).

Since the tracking system is limited both by the low bitrate
offered by the acoustic links and by the limited scanning
speed of the sonar, we do not consider complex tracking
models for the shark, but rather a simple dead reckoning:
as every point between 400 m and 650 m from the coast is
covered by at least one sensor, we assume that the shark will
continue on the last reported course until an update is received,
updating the estimated position once every second. However,
as packet losses are relatively frequent, determining whether
the shark left the coverage area or multiple packets were just
lost is crucial. If the last sensor detecting the shark was on
the first or last row, and the shark is not detected for more
than 20 seconds, the system assumes that the target is out of
range, updating the alarm accordingly. Hence, if the last sensor
detecting the shark was at the edge closest to the shore, the
alarm level is raised to the maximum, evacuating water users;
instead, if the shark was last seen at the outer edge of the
coverage area, the alarm is set to 0.

III. EVALUATION SCENARIO AND SWAN PERFORMANCE

We have tested the warning system with the DESERT Un-
derwater network simulator, using real performance figures for
the modems. We have only considered instances with a single
shark, assuming that there will be no spurious detections due
to other large fish or dolphins [4] and that the presumably rare
scenario in which multiple sharks simultaneously approach
the shore will not occur. The description of how the packet
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Fig. 3: Confusion matrices for the different communication configurations of the SWAN.

delivery ratio is computed depending on the communication
range and on the interference is presented in [15].

As no short-term shark movement models are present in
the literature, we assume that the target moves according to
a random waypoint model in the overall simulation area. We
consider zero standing time, and we model the speed with a
Gaussian distribution with mean and standard deviation equal
to 2.5 and 1 m/s, according to the estimate of the sustained
swimming speed of dangerous shark species [6], [7]. The
model represents the motion of a shark that may swim in
a direction for some time, and then swiftly changes direction
towards a school of fish or another object that captures its
interest. While the validation for this model in the literature
is limited, as most works tend to concentrate on long-term
migration patterns rather than extremely short-term behavior,
it represents a good benchmark to evaluate our system: sharks
have rarely been observed determinedly moving toward the
shoreline, but rather follow prey for a certain distance, then
change direction and swim parallel to or away from the
shoreline.

We then focus on the alarm function shown in Fig. 2:
namely, we consider the difference between the reported
alarm level and the correct one, i.e., what an ideal shark
spotting system with human observers and perfect visibility
would report. As discussed above, we consider Type I and II
errors separately, as they have significantly different effects on
water users’ safety, and consider both the continuous and the
quantized version of the alarm level function.

To assess the SWAN performance, we perform 10 different
runs for a total of about 3 hours of simulation time. We use the
alarm function to compare RR and ALOHA, adding an ideal
system as a benchmark: this is an upper bound to the actual
performance, as any communication system needs to deal with
delay or packet loss. Showing the ideal performance allows
us to gauge how much of the error is due to communication
impairments and to the slow pace of the sonar, which is the
only source of error in the ideal case.

We can first consider the confusion matrix1 for the quantized
alarm function, which shows the types of errors that each
of the considered systems makes. Fig. 3 shows the three
confusion matrices, with increasing alarm levels from 0 (no
shark detected) to 1 (a shark is in the high risk area): the
types of scenarios in which the shark evades the tracking
are relatively similar, and often include instances in which
it moves close to either edge of the area covered by the
sensors. We can note that the ALOHA system has a better
discrimination performance than RR: the values on the di-
agonal of the confusion matrix are higher in Fig. 3b than
in Fig. 3a, and larger errors are rarer. Errors are also more
common at higher alarm levels, as the alarm function is non-
linear, and the regions corresponding to higher alarm levels
are smaller. However, there is still a significant gap with
respect to the upper bound represented by a system with ideal
communication, shown in Fig. 3c: in the latter, the alarm level
estimate is almost perfect, as updates are frequent and never
lost. The high packet loss of underwater acoustic links, along
with the difficulty in coordinating between sensors, results
in a higher error, but the system can successfully detect a
shark approximately 90% of the time, and Type I errors are
more frequent than Type II errors, indicating that even with
imperfect communications, the system achieves high detection
performance and a significant level of safety.

We can also examine the continuous alarm level function to
get a better idea of the system’s behavior and the conditions
in which errors happen. In Fig. 4, we plot the error in the risk
factor estimated by the system for a simulation period of 4000
seconds, assigning positive and negative values to the Type I
and Type II errors, respectively. Negative values then mean that
the system is underestimating the threat posed by the shark,
while positive errors mean that it is overestimating it. Most of
the time, the system succeeds in estimating the shark trajectory
and the tracking error is almost zero. However, there are some
periods in which the RR system completely loses track of the

1In a confusion matrix for a prediction model, the (i, j)-th entry is the
probability that a ground truth value i is predicted as j.
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shark: this is caused by the relatively slow pace of RR updates,
which can cause the system to miss the shark entirely if just
a couple of packets are lost. If the shark traverses the whole
area covered by the sensors and moves into the high risk area
close to the shore, as shown around the 1000 s mark in the
figure, the RR system might miss it entirely and still report that
there are no sharks in the area. The ALOHA system avoids
this issue, thanks to the faster pace of packet updates: this
comes at the cost of a certain risk of collision, but the overall
performance of the system is greatly improved. In some cases,
both systems can have significant Type I errors, but this type
of error has less serious consequences on the safety of water
users, as it leads to excessive precautions being taken.

Finally, Fig. 5 shows the Complementary Cumulative Dis-
trbution Function (CCDF) of Type I and Type II errors:
ALOHA has a slight advantage over RR. Type I errors occur
approximately 26% of the time with all three systems, while
Type II errors are rarer, occurring 17.6% of the time for
the ALOHA system and 18.2% of the time for RR, while
the ideal system only has Type II errors 9% of the time.
We can see that ALOHA is slightly better at tracking the
shark than RR, while there is a significant gap with the ideal
system. However, significant errors are still rare: large Type II
errors, in which the shark enters the high risk area undetected,
represent approximately 20% of overall Type II errors, i.e.,
approximately 3.2% for ALOHA and 3.6% for RR. Large Type
I errors occur slightly more frequently, but as we mentioned
above, they are less dangerous for water user safety.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have illustrated the possible design of an
automated shark detection and warning system, with several
advantages over existing shark-spotting programs: the fully
automated nature of the system and its relative robustness to
sea conditions, along with the low operating costs, make it a
viable alternative to more invasive systems such as drumlines.
We show that properly configuring the network and using the
most effective access mechanism has a significant effect on
performance, and that using an ALOHA system in which only
nodes that sense a shark in the vicinity transmit gives the
best results with respect to scheduled mechanisms. However,
ALOHA is also less robust in scenarios in which more than

one shark approaches the shore at the same time, at a distance
between 100 and 200 m: this case is presumably rare, but it
would lead to a significantly higher risk of interference, which
is entirely avoided by an RR system, and we plan to consider
it in future work, along with prioritized systems that privilege
information on sharks closer to the shore, i.e., more dangerous
ones. Other potential research directions on the subject include
a field test of the system in a real underwater acoustic network,
as well as a tighter collaboration with marine biologists to
improve our understanding of shark behavior and threat levels.
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(a) Type I errors.
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(b) Type II errors.

Fig. 5: Complementary CDF of the magnitude of the error in both directions.
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