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Abstract—One of the main challenges in underwater position-
ing is a correct estimate of the sound speed in the deployment
area. In fact sound speed can be either directly measured
with a velocity meter, or indirectly computed from Conductivity
Temperature and Depth (CTD) measurements. While the former
approach requires the use of very precise devices that need to
be often calibrated, the latter requires the use of extremely
precise CTDs that are usually very expensive. The availability
of low-cost unmanned underwater vehicles and low-cost acoustic
modems makes the integration of both velocity meters and CTDs
impractical, as the cost of these devices will be in the same
order of magnitude of the unmanned vehicle itself. On the other
hand, the recent availability of large data-sets of sound speed
measurements in various parts of the world, and the efficient im-
plementation of Machine Learning algorithms that can nowadays
run also in embedded devices, suggest a new approach based on
sound speed prediction through Machine Learning algorithms
trained on historical data of sound speed and environmental
measurements in the area close to the deployment.

In this paper we analyze a different approach for this predic-
tion, and assess the effect of a wrong sound speed estimate in
our newly proposed ranging protocol developed in the DESERT
Underwater Framework.

Index Terms—Ranging, underwater acoustic networks, sound
speed profile prediction, DESERT Underwater.

I. INTRODUCTION

The ocean contains a vast amount of resources: mineral,
biological, ecological, defense, and is a unique physical en-
vironment for researchers to test various ideas. To gradually
obtain resources and utilize the physical environment of the
ocean, people are gathering all their strength to go deep
into it. Unmanned underwater swarms are currently a popular
means of safely exploring the ocean on a large scale [1].
In underwater unmanned swarms, applications such as mo-
bile formation maintenance, joint detection and sensing, joint
mobile positioning and path planning, acoustic-optic image
data splicing and data fusion require more flexible, convenient
and accurate ranging between mobile sensing units [2], [3].
Since optical signals and electromagnetic signals are severely
attenuated underwater, and the cost of additional ranging
sensors is too high, in underwater unmanned swarms equipped
with underwater acoustic communication devices we prefer to
integrate the ranging function into communication networks.

The basic principles of underwater ranging are the same as
in terrestrial ranging [4], while the following differences need
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to be considered in the design. The speed of sound is five
orders of magnitude lower than the speed of electromagnetic
signals, so the impact of node mobility is more pronounced
than on land. In fact, we must consider the movement of
nodes during the propagation delay, and underwater Doppler
shift increases significantly due to the low propagation speed
of acoustic signals. The speed of sound under water is also
affected by temperature, salinity and pressure, which vary
with depth, location, environmental conditions, time of the
year and hour of the day [5]. Underwater acoustic spectrum
resources are limited, and the occupation of channel resources
by ranging applications must be coordinated through the
underwater Medium Access Control (MAC) protocol, making
it difficult to ensure that ranging services are available in real
time.

Based on the above considerations, we have added improve-
ments suitable for modern underwater acoustic networks to the
existing ranging algorithm to achieve the goals of being low-
cost, accurate and suitable for applications.

The first contribution of this paper is to propose a real-
time sound velocity estimation method that does not rely on
Conductivity Temperature and Depth (CTD) sensors [6] and
sound velocity meters [7] to improve the accuracy of ranging
without increasing costs. In fact, both devices have a price
in the same order of magnitude of low-cost Autonomous
Underwater Vehicles (AUVs) and Remotely Operated Vehicles
(ROVs), making them unusable in low-cost swarm deploy-
ments. Our approach, instead, relies on applying Machine
Learning algorithms to predict the sound speed profile in a
certain location and in a certain time of the year. The algorithm
will be trained with historical CDT and environmental data
publicly available online. Different prediction approaches are
compared and the impact of a good and bad prediction
analyzed in a newly developed ranging algorithm.

The second contribution of this paper is the design of a novel
ranging protocol for underwater networks. We adopt a one-way
ranging method to adapt to the underwater MAC protocol.
Single packet ranging can be better integrated into various
network topologies and application scenarios, providing more
flexible services. At the same time, it reduces signaling over-
head and channel occupancy, and also reduces interference to
surrounding acoustic systems. Moreover, the existence of low-
cost Oven-Controlled Crystal Oscillators (OCXO) [8] enables
precise clock synchronization without the need for expensive
atomic clocks. Different from traditional one-way ranging
methods, we exploit the node movement information hidden
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Fig. 1: Sound speed variability observed for almost 4 years at
different water depth.

in communication packets. Based on the sending timestamp,
arrival time and stop receiving time of two consecutive packets
of the same duration in one transmission, we can infer the
speed and movement trajectory of the mobile node. We
divide one-way ranging into active and passive, uplink and
downlink situations, and propose corresponding calculation
methods respectively, to adapt to different network topologies
and network applications. This protocol is implemented and
evaluated in a realistic scenario by means of the DESERT
Underwater network simulator [9].

This paper is structured as follows. Section II presents the
sound speed prediction algorithms and discusses its precision.
Section III details a novel one-way ranging protocol for under-
water networks. The protocol is then evaluated in Section IV.
Section V finally concludes the paper.

II. SOUND SPEED PREDICTION

The underwater acoustic channel is affected by seawater
pressure, temperature and salinity, and the propagation path
is curved and complicated. Moreover, underwater acoustic
channels present a complex distribution of sea areas, latitudes,
seasons and depths. The underwater acoustic channel has a
high degree of space-time variation. Without these hydrome-
teorological parameters, the establishment of the underwater
acoustic channel is extremely unreliable. Considering the
high cost of deploying sensor nodes and conducting ocean
exploration, it is necessary to predict the sound velocity profile
of the target sea area in the target time window in advance
to estimate the state of the underwater acoustic channel. The
boxplots in Figure 1 highlights how the sound speed changes
during 4 years at different water depth. While in deep water
the maximum variability is between 5 and 10 m/s, in shallow
water the sound speed can change quite significantly, with a
maximum variability that can even exceed 30 m/s during the
year.

In Section II-A we present the data-set used for training our
prediction algorithms, which is explained in Section II-B and
evaluated in Section II-C.

Fig. 2: Last positions of active Argo-Italy floats, image
from [12].

Fig. 3: Argo data (salinity and temperature) for floater 6903799
acquired on the 22nd of December 2023.

A. Argo Data-Set

The Argo program [10] collects various data with more than
3’500 floats deployed across the world’s oceans, describing the
temperature and salinity of the water, and some of them also
measure other properties that describe the biology/chemistry
of the ocean. These data were collected and made freely
available by the International Argo Program and the national
programs that contribute to it. The Argo Program is part of the
Global Ocean Observing System [11], and more than 100’000
temperature and salinity profiles are collected each year.

In this paper we focus on the data acquired by Argo-
Italy [12], which focuses mainly on the Mediterranean sea:
the position of the floaters can be observed in Figure 2: for
our prediction model we focus on the data retrieved by the two
floaters highlighted in red at the center of the map and located
between Italy and Albania. The floaters unique identifiers are
6903799 and 6903825, respectively. From these two floaters,
a data measurement cycle is performed every 5 days. To date,
215 measurement cycles are available for floater 6903799,
while 80 cycles are available for floater 6903825. An example
of temperature and salinity profile dowloaded from the Argo
website is depicted in Figure 3.

In this paper, we try to predict the spatial-temporal variation
of the target sea area with the Argo data-set. In the Argo data
frame, we can obtain various hydrometeorological parameters
of different water depths sampled by the buoy in each previous
round of missions, as well as the timestamp and precise
coordinates of each data upload.



0-
10

10
-2

0
20

-2
5

25
-3

0
30

-4
0

40
-5

0
50

-7
5

75
-1

00
10

0-
15

0
15

0-
20

0
20

0-
50

0
50

0-
10

00
10

00
-2

00
0

depthgroup (m)

0

2

4

6

8

10
so

un
d 

sp
ee

d 
er

ro
r (

m
/s

)

(a) Error of a single RF trained with all data.
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(b) Error when two RF are used to predict deep and shallow water.

Fig. 4: Boxplots grouped by depth showing the error of the prediction models.

B. Sound Speed Prediction Algorithm

Water temperature changes are mainly determined by lo-
cation, depth and salinity, hence these three parameters are
used for training our prediction model. We chose to use the
random forest algorithm, that in [13] was proven to be a
valuable choice to predict sound speed in the Pacific Ocean.
A random forest regression, in fact, is a supervised learning
algorithm that uses an ensemble learning method. Specifically,
it creates a group of decision trees from different samples of
input data. For regression tasks, it returns the mean or average
prediction of the individual trees. It is a bagging technique that
reduces the variance and works well for most kinds of data. In
contrast to neural networks, random forests are less accurate,
but require less data for training and are less computationally
expensive, making them a good fit for battery-supplied low-
cost vehicles deployment. In this paper, we trained the random
forest with time, depth and salinity measured in the last 42
months.

We highlight that the Argo measurements are provided with
a quality metrics. Low quality measurements refer to samples
taken in unstable conditions or temporary malfunctioning of
the sensory system, and are not used in the training process.

Given the depth d and from the prediction of salinity s and
temperature t we can compute the sound speed c with the
Wilson equation [14]:

c(t, s, d) =1449.2 + 4.6t− 0.055t2 + 0.017d+

+ (1.34− 0.01t)(s− 35). (1)

C. Sound Speed Prediction Accuracy

In this section, we discuss the accuracy of the random forest
(RF) model described in Section II-B. Specifically, we trained
the random forest with 42 months of data, and then predict
the next 4 months (from July to October 2023).

Table I shows the Mean Absolute Error and prediction
accuracy of the temperature, salinity and sound speed for our

TABLE I: Prediction Accuracy Results

Depth Shallow Deep All Depth
Temperature MAE (°C) 1.1555 0.1112 0.1866
Temperature Accuracy 94.28 % 99.26 % 98.9 %

Salinity MAE (psu) 0.181 0.0161 0.028
Salinity Accuracy 99.53 % 99.96 % 99.93 %
Speed MAE (m/s) 3.0569 0.3612 0.5556
Speed Accuracy 99.8 % 99.98 % 99.96 %

separate Random Forest models for shallow (< 30 m) and
deep (≥ 30 m) water.

Results in Figure 4a present the boxplots of the prediction
error along the water column, clearly showing how a very
small error can be achieved with a depth of more than 50 m,
while closer to the surface the prediction error increases. This
happens because the dynamics of sound speed at the surface
is quite different, presenting higher fluctuations than in deep
water (see Figure 1). Given these differences, we tried to use
two different predictors for deep water and shallow water,
i.e., by using two different random forests, one for predicting
the sound speed when the depth is more than 30 meters, and
one when the depth is less than 30 meters. Results shown in
Figure 4b give a performance improvement of 20% in shallow
water with respect to using one single random forest trained
with all data, still maintaining the same accuracy for deep
water.

In order to prove the effectiveness of our model, in Figure 5
we show the sound speed prediction error if we use the sample
mean of the sound speed computed for each depthgroup on
different time intervals, namely:

• the last year until one month before the prediction, named
from here onwards AVG;

• the month before the prediction, named from here on-
wards LM;

• the same month but the year before the prediction, named
from here onwards YB.

While AVG clearly provides a wrong prediction of the
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Fig. 5: Boxplots grouped by depth showing the error of the benchmark models.

Fig. 6: Uplink Ranging.

Fig. 7: Downlink Ranging.

sound speed, better results can be obtained with LM and,
specially, with YB. Still, even using YB the prediction error
is significantly higher than with random forest, especially in
shallow water and for a water depth higher than 200 m.

III. ONE-WAY RANGING PROTOCOL

In mobile underwater acoustic communications, the prop-
agation speed of signal is 5 orders of magnitude lower than
the speed of EM wave or Optics, and the motion of mobile
node can not be ignored. In applications related to ranging, it

is necessary to compensate for the offset of the mobile node
during the acoustic signal propagation.

We provide two scenarios of ranging service shown if
Figure 6 and Figure 7. In the first scenario, the mobile nodes
proactively send packets to static nodes to provide updates
about their mobility and position information. In the other one,
the mobile nodes passively receive packets from static nodes
to estimate their own mobility and position information. In
both scenarios we use our precise estimation of sound speed
c mentioned above. Table II describes the parameters of the
ranging protocol.

TABLE II: Parameters Description

Name Description
v velocity of the mobile node

D
distance between the static node

and the trajectory of the mobile node
c speed of sound underwater
t0 timestamp for the first packet transmission

tslot slot duration from the sender
t1 time of arrival for the first packet
t2 time of arrival for the second packet
t3 time of arrival for the third packet

We assume that one of the ranging parties is a static node
and the other is a mobile node. If there are two moving
nodes, we use one of them as a static reference to estimate the
relative motion. Our current algorithm takes the motion during
the ranging process as moving along a straight line with a
constant velocity v. The distance between the static node and
the trajectory of the mobile node is D. In uplink ranging,
the mobile node sends two packets of the same duration tpkt.
In downlink ranging, the static node sends two packets of
the same duration tpkt. We utilize this transmission of two
packets as multiple measurements. With these ranging data
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we can derive the relative velocity of the mobile node and the
distance between the static node and the trajectory.

The idea is to construct the structure of the center line of
the triangle. The mobile node moves in a fixed direction and
sends three data packets or pulse signals towards the static
node. Such a geometric relationship forms the structure of
Stewart’s theorem [15]. If the mobile node moves the same
distance during the transmission interval, it forms the structure
of Apollonius’ theorem, which makes the calculation simpler.

In Figure 8, let a, b, c be the lengths of the sides of a
triangle. Let d be the length of a cevian to the side of length
a. If the cevian divides the side of length a into two segments
of lengths m and n, with m adjacent to c and n adjacent to b,
then Stewart’s theorem states that

b2m+ c2n =a(d2 +mn). (2)

In Figure 9, let the triangle have sides a, b, c with a median
d drawn to side a. Let m be the length of the segments of a
formed by the median, so m is half of a, then Apollonius’s
theorem states that

b2 + c2 =2(d2 +m2). (3)

In the uplink ranging process, the mobile node transmits three
packets or three pulse signals to the static node to allow the
static node to calculate the speed of the mobile node and
the distance between the two nodes. The three packets are
transmitted one by one and equally spaced. We consider the
mobile node to be moving at a constant speed during the

ranging process. The mobile node as the sender travels the
same distance between two transmissions. With timestamp of
transmissions and arrival times, the travel time of each packet
can be calculated on the static node’s side. p1, p2 and p3 are
the distances along the propagation path of the three packets:

p1 = (t1 − t0) c (4)

p2 = (t2 − t0 − tslot) c (5)

p3 = (t3 − t0 − 2tslot) c. (6)

According to Apollonius’s Theorem,

2p22 + 2v2t2slot = p21 + p23 (7)

We can solve for the speed of the mobile node:

v =
1

tslot

√
1

2
p21 +

1

2
p23 − p22. (8)

At a certain time t after the third arrival, before the speed
of the mobile node changes, we can solve the ranging r at
time t with Stewart’s Theorem:

p22 (t− t0 − 2tslot) v + r2tslotv =

(t− t0 − tslot) v
(
p23 + tslotv

2 (t− t0 − 2tslot)
)
. (9)

r2 =
(t− t0 − tslot)

(
p23 + tslotv

2 (t− t0 − 2tslot)
)

tslot

−p22 (t− t0 − 2tslot)

tslot
(10)

In the downlink ranging process, the static node transmits
three packets or three pulse signals to the mobile node to allow
the mobile node to calculate its own speed and the distance
between the two nodes. The three packets are transmitted one
by one within the same interval. Due to mobility, the intervals
of the arrivals of the three packets are not the same but with
timestamp of transmissions and arrival times, the travel time
of each packet can be calculated on the mobile node’s side:

p1 = (t1 − t0) c (11)

p2 = (t2 − t0 − tslot) c (12)

p3 = (t3 − t0 − 2tslot) c. (13)

We can apply Stewart’s Theorem to solve for the speed of the
mobile node:

p21 (t3 − t2) v + p23 (t2 − t1) v =(
p22 + v2 (t3 − t2) (t2 − t1)

)
(t3 − t1) v (14)

v2 =
p21

(t3 − t1) (t2 − t1)
+

p23
(t3 − t1) (t3 − t2)

− p22
(t3 − t2) (t2 − t1)

. (15)



At a certain time t after the third arrival, before the speed of
the mobile node changes, we can solve for the ranging r at
time t with Stewart’s Theorem:

r2 (t3 − t2) v + p22 (t− t3) v =(
p23 + v2 (t3 − t2) (t− t3)

)
(t− t2) v (16)

r2 =
(t− t2) p

2
3

t3 − t2
− (t− t3) p

2
2

t3 − t2
+ (t− t2) (t− t3) v

2 (17)

TABLE III: Simulation settings

Parameter Value
Number of nodes (N ) 2

Node speed 2 m/s
TDMA Slot time 0.2 s

Source level 200 dB re 1 µPa 1 m
Water depth 21 m / 355 m

Central frequency 65 kHz
Bandwidth 30 kHz

Bitrate 1000 bps
Packet size 8 bytes
Modulation BPSK
Wind speed 1 m/s

Shipping level 1
Practical spreading 1.5
Interference model DESERT “meanpower” model, considered

at SINR

IV. SIMULATION RESULTS

In this section we describe the simulation setup (Sec-
tion IV-A) used to evaluate the ranging algorithm, and the
simulation results (Section IV-B) that show the effectiveness of
the proposed solution and how important it is to have a good
estimate of the sound speed when ranging and localization
tasks are performed.

A. Simulation Scenario and Settings

Our simulation was performed within the DESERT Under-
water framework [9]. The setup includes simulation depths of
21 and 355 meters to show the performance of the benchmarks
and our solution at different depths. We simulate one static
node and one mobile node. The mobile node starts from 750 m
away from the static node and moves on a straight line at a
constant speed of 2 m/s. The distance D between the trajectory
and the static node is 500 m and the maximum ranging
distance is 2500 m. We set up two scenarios for the simulation.
One is uplink, where the mobile node sends packets to the
static node and the static node performs computation of the
ranging and speed of the mobile node. The other is downlink,
where the static node sends packets to the mobile node and the
mobile node performs the calculation. The packet transmission
follows a slotted schedule. The slot duration is 0.2 s. From
each beginning of the first three slots, we transmit one packet
of 8 Bytes. We set the sound speed in the simulation as the

measured value on July 17, 2023 and August 17, 2023. We
feed the ranging algorithm with our sound speed predictions
of the days for each depth and compare the results with the
benchmarks.

B. Results

We pick two dates and two depths in the test dataset of
sound speed. Compared with the actual distances, we show
in Figure 10 that the ranging errors with our predicted sound
speeds are significantly smaller than the benchmarks. With just
one run of our algorithm at a cost of one propagation delay
plus twice a variable slot duration according to the minimum
packet size, we are able to maintain an efficient ranging service
for both uplink and downlink.

In Figure 10a and Figure 10b, the errors in all categories are
larger than those in Figure 10c and Figure 10d, because both
spatial and temporal variations of sound speed in shallow water
are more severe. With our solution, we managed to control the
error in ranging for 2500 m within 2 m.

V. CONCLUSION AND FUTURE WORK

This paper presents a one-way travel time ranging protocol
for low-cost underwater acoustic network where nodes, instead
of using CTD or velocity meter sensors to directly measure the
sound speed, are equipped with a machine learning algorithm
trained with environmental data usually used for meteorology
and retrieved close to the deployment area. Results show
how precise prediction of sound speed affects the accuracy
of a ranging protocol. Our solution achieves good accuracy
as a joint ranging and node speed estimation with minimum
channel resource occupation.

Future work will focus on real field tests proving whether
this solution can be applied to a real system.
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(a) Depth 21 m, July 17.

0 200 400 600 800 1000 1200 1400
Time ( )

−6

−4

−2

0

2

4

Er
ro
r (

m
)

RF
YB
LM
AVG

500

750

1000

1250

1500

1750

2000

2250

2500

Tr
ue

 d
i t

an
ce

 (m
)

True di t

(b) Depth 21 m, August 17.
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