Robot Operating System (ROS) talks underwater:
an open-source communication middleware to
control underwater vehicles

Davide Costa
davide.costa@unipd.it
University of Padova - Department of
Information Engineering
Padova, PD, Italy

Abstract—Underwater robots are usually remotely controlled
from the base station using umbilical cables due to the prop-
agation problems of electromagnetic waves in the water, which
are strongly attenuated after a few centimeters. It is possible
to overcome this constraint by employing acoustic networks to
communicate with underwater vehicles to send commands and
receive sensor informations, by creating an ad hoc system tailored
for each specific scenario.

Advancements in underwater acoustic transmissions allowed
us to introduce a general approach which can be exploited to use
generic robot applications both with standard Ethernet networks
and with acoustic underwater networks. In this paper we present
a middleware layer module that enables any Robot Operating
System (ROS) application to exchange informations through the
underwater acoustic channel, without making any change in the
user-level control logic.

Index Terms—Robot Operating System, DESERT Underwater,
underwater acoustic networks.

I. INTRODUCTION

Underwater Unmanned Vehicles (UUVs) and sensor sta-
tions are widely used devices across different sectors like
oceanographic research, infrastructure inspection, offshore oil
and gas industry, and defense [1]. Moreover, specific types
of unmanned, self-propelled underwater drones known as
Autonomous Underwater Vehicles (AUVs) are often employed
to operate in extreme scenarios and follow pre-programmed
missions [2]. In contrast, the Remotely Operated Vehicles
(ROVs) category refers to all drones which are linked to a
surface vessel with a cable, allowing for real-time remote
operation by a human pilot. This physical connection enables
ROVs to perform intervention tasks requiring high maneu-
verability and manipulation, though their range is limited. To
avoid the constraints due to cable length, as well as the hazards
related to cable entanglement, wireless communications would
be desirable. However, when an electromagnetic wave travels
through a conductive medium, the oscillating electric field of

This work was partially supported by the European Union under the Italian
National Recovery and Resilience Plan (NRRP) of Next Generation EU,
partnership on “Telecommunications of the Future” (PE0000001-program
“RESTART”).

Filippo Campagnaro
filippo.campagnaro @unipd.it
University of Padova - Department of
Information Engineering
SubSeaPulse SRL
Padova, PD, Italy

Michele Zorzi
michele.zorzi @unipd.it
University of Padova - Department of
Information Engineering
SubSeaPulse SRL
Padova, PD, Italy

the wave causes the free ions to move, creating an electric
current. This movement of charge encounters resistance, lead-
ing to the conversion of the EM wave’s energy into heat.
Furthermore, water molecules are polar, meaning they have
a positive and a negative end. The oscillating electric field
of an EM wave causes these molecules to rotate and align
with the field. As the electric field oscillates rapidly, the water
molecules continuously try to reorient themselves, and this
constant movement creates friction, which again converts the
EM wave’s energy into heat [3].

A possible solution to overcome the constraints of physical
cables is to use acoustic waves. The process involves convert-
ing data into sound waves, transmitting such waves through
water using acoustic transducers, and employing sophisticated
signal processing and modulation techniques to recover the
transmitted information [4]. To achieve the goal of remotely
controlling a UUV through acoustic transmissions, we chose to
leverage on already existing systems used for both robotics and
underwater applications, combining those two fields together
without creating new applications from scratch.

The main issue is the lack of a single, universally adopted
standard for underwater networks, but there are emerging
systems, best practices, and common architectural approaches
being developed and used for creating underwater acous-
tic networks (UANs). Different communication protocols for
UANSs are developed by a diverse range of entities, including
academic researchers and universities, industry development
teams and military research institutions, so the field is con-
stantly evolving with new techniques emerging as the under-
standing of the underwater communications improves. These
efforts have the goal to address the unique challenges of the
acoustic channel, such as low bandwidth, long propagation
delay, low bitrate and poor performance in shallow water and
in the presence of shipping and wind noise [5].

JANUS [6] represents a key initiative to standardize un-
derwater acoustic communications, which aims to achieve in-
teroperability across different military and civilian underwater
platforms and equipment from multiple manufacturers. Its dis-



tinct open and public specification enables wide utilization by
academia, industry, and governments, with the fully described
details on signal encoding and message format allowing the
development of universally compatible transmitters and re-
ceivers.

The setup of the system makes use of the DESERT Un-
derwater protocols stack [7], which enables the deployment
of a simulated channel to verify the correct operation of the
network prior to the sea trial.

For robotics applications the situation is similar, but the
field is converging towards a set of widely adopted frameworks
and emerging standards. Hence, we are going to use the Robot
Operating System (ROS) [8], the most widely employed open-
source solution available for building robotic applications that
includes extensive features, a large community, and growing
industrial support.

The purpose of this work is to show how robotic frameworks
can be used to remotely control underwater vehicles using
acoustic waves, that are well suited for specific situations
where employing cables is not a viable option like deep-
sea operations, long-range underwater communications and
various military scenarios. Especially, we will focus on pre-
senting an open-source system capable of controlling AUVs in
a simulation environment, with the goal of preparing ourselves
for a future trial with real hardware at sea.

This paper is structured as follows. Section II describes
the system architecture with a description of the software
components used, for both the robotic and the acoustic parts.
Section III deepens the concept of middleware, fundamental
for our control purposes, while the results of the simulation
are discussed in Section IV. Finally Section V concludes the

paper.
II. SYSTEM ARCHITECTURE

In this section we present the architecture of the system
developed to control AUVs with acoustic transmissions: the
most basic setup is composed of two nodes, equipped with
ROS (Section II-A) and the DESERT Underwater framework
(Section II-B), responsible for creating the network protocol
stack. With this configuration, robotic applications built with
ROS can easily become control stations using acoustic trans-
missions rather than the standard network, by simply changing
one parameter at runtime.

A. Robot Operating System

Initially, various software platforms emerged, offering mod-
ularity and flexibility to simplify robot construction. Some of
these evolved into full ecosystems of tools and algorithms.
However, the original Robot Operating System (ROS 1), fueled
by Willow Garage’s innovation, became the main solution
employed in robotics research and industrial developments [9].
Today, the second major release known as ROS 2 replaced the
original in most use cases, for both the industrial and research
fields.

The set of ROS 2 open source software libraries provides a
communication infrastructure, a common API to build robot

User App User Code

Third-party Clients Nodes
(Java, Ada) Topics
. Publishers/Subscribers

Python Client
(rclpy)

C++ Client
(rclcpp)

) (

Client Wrapper Services/Clients

ROS Client Library
(rcl)

S

ROS Middleware
Middleware (rmw)

DDS Agnostic

FastRTPS ROS Agnostic
RTI Context :
RMW RMW Third-party
i RMW

Lt on Implementation

Communication
Layer

FastRTPS DDS RTI Context DDS OpenSplice DDS

Operating

System Ubuntu

Fig. 1. Architecture of ROS2.

Mac 0S

applications, hardware abstraction, and advanced simulation
capabilities [8]. As depicted in Figure 1, it employs a layered
architecture to manage its complexity and promote modularity,
making the system more maintainable and adaptable.

The User Application Layer is the topmost one, where
users develop their specific robot functionalities. It consists
of the nodes that implement the robot’s behavior, algorithms,
sensors drivers, and control logic. Developers use the client
libraries to create these nodes and employ the communication
mechanisms provided by ROS 2. Examples of applications in
this layer include:

e navigation systems;

« perception algorithms;
¢ robot control systems;
e user interfaces;

o task planning modules.

The Client Wrapper Layer provides higher-level access to
the core communication APIs. Its libraries are customized
for each programming language and depend on a common
interface called ROS Client Library (rcl), which provides
access to the ROS 2 concepts [8]. rcl is in charge of adapt-
ing the specific language implementation with the common
C++ underlying layers of the framework, offering convenient
abstractions for tasks such as creating nodes, publishing and
subscribing to topics and managing services. The most widely
used client libraries are rclcpp, the C++ client library,
offering high performance and direct access to ROS 2 features,
and rclpy, the Python client library, which provides a
more accessible and rapid development environment. Other
client libraries such as rclc exist, often used in resource-
constrained environments such as micro-ROS.

Finally, the Middleware Layer is a crucial abstraction that
isolates the core framework functionalities from the specifics
of the underlying communication infrastructure. The ROS
Middleware (rmw) interface defines a set of C APIs that
higher-level libraries employ for the physical data exchange,
enabling the usage of multiple rmw implementations and
making ROS 2 potentially compatible with different commu-
nication technologies [8].



B. DESERT Underwater

The DESERT Underwater Framework [7] is an open-source
software tool specifically designed for the development and
testing of underwater acoustic networks. Built upon the NS-
MIRACLE network simulator, it offers a customizable envi-
ronment for researchers and developers in underwater commu-
nication. DESERT facilitates the design and implementation
of various layers of the underwater network protocol stack,
from the physical to the application layer, allowing for the
integration of custom protocols and algorithms.

The simulated channel within the framework provides a
way to model the complex environment of underwater acoustic
communication, computing the propagation delay between the
transmitter and the other nodes, and using noise, path loss, and
interference to obtain the bit error rate. In this way, high-level
applications can be tested locally without employing a modem,
in order to perform first-stage validations on the functionalities
implemented. Another significant strength of DESERT lies
in its emulation capabilities, that enable users to connect to
physical underwater acoustic modems via serial or Ethernet
connections for hardware testing and real-time interaction. By
supporting real modems and providing experimentation tools,
DESERT facilitates the transition of developed applications to
actual underwater deployments.

Finally the upper layer called uwApplication is used to
interface the protocol stack with user applications, creating a
TCP socket on the machine running DESERT. By interacting
with the transport layer or lower layers, it sends and receives
the application data that drives the network’s purpose. A key
characteristic is its role in abstracting the complexities of the
underwater communication medium and network protocols,
allowing application developers to focus on their specific
functionalities. It will be employed in our architecture to create
the bridge between ROS 2 and DESERT Underwater.

III. MIDDLEWARE STRUCTURE

This section describes the RMW interface’s implementation
called ROS Middleware for DESERT (rmw_desert), which
enables ROS applications to exchange data through underwater
acoustic networks. The layer handles essential communication
tasks like:

« discovery: how nodes find each other in the network;

« publish/subscribe: the mechanism for one-to-many asyn-

chronous communication via topics;

o request/response: the mechanism for synchronous service

calls;

e actions: a more complex request-response pattern with

feedback and goals.

To understand how those operations are performed, we have
to focus on the ROS modules stack and zoom in on the central
part, as depicted in Figure 2. When rc1 generates some data,
it passes a pointer through the rmw interface indicating the
start location of the message, with an additional parameter
called type support that is used to understand the structure of
the message itself. Using the above information, the imple-
mentation splits the data into various fields by scanning the

ROS client library (rcl)

Message interpretation

v

CBOR encoding

v

)
) ]
)
) |
)
)

— RMW desert

%7

TCP link to DESERT

v

DESERT protocol stack

— o Y Y Y Y

Underwater channel

Fig. 2. Architecture of rmw_desert.

memory locations, leading back to a list of fundamental data
types such as integers, strings or floats.

Having extracted the basic data types within the message,
the middleware encodes and serializes them into a unified data
stream. We selected the Concise Binary Object Representation
(CBOR) [10] for this purpose due to its efficient serialization
and deserialization capabilities. This choice ensures a compact
binary representation, which mitigates the risk of saturating the
limited bandwidth of the underwater channel. When encoding
data, CBOR first identifies the type of data it is dealing with,
such as an integer, a text string, or an array. It then uses a
small header, typically just one to a few bytes, to indicate this
data type and its length or the number of items it contains [10].
For example, a small positive integer might be encoded with a
single byte, where the first few bits indicate it is positive, and
the remaining bits represent the value. This binary nature of
CBOR leads to faster parsing compared to text-based formats
like JSON, as there is no need for extensive text processing.

Starting from the payload just built, the middleware creates
a packet with additional fields, as depicted in Figure 3. A
predefined bit sequence marks the start of the packet, while
another sequence denotes its end, then a byte with the payload
dimension is included to check the integrity of the packet. A
stream type field is added to the CBOR encoded part, used
to detect if the sending entity is a publisher, a service or a
client. In addition, a stream identifier field is used to encode
the topic name or the service name.

In the last step, the packet is delivered to the upper
layer of DESERT through a TCP socket created by the
uwApplication module, that sends the packet down to the
lower layers responsible for routing it to the correct destination
through the acoustic channel.

Stream Stream
Type | Ider
1 byte

Starting | Starting Payload

Dimension

Remaining | Ending

Sequence itifier Payload

1 byte

Sequence

1 byte

Sequence

1 byte

1 byte 1 byte n bytes

Fig. 3. Packet structure.



IV. SIMULATION RESULTS

In this section, we test the middleware described in Section
III using an acoustic modem emulator. The Evologics S2C
acoustic modems come with an emulator called S2C DMACE
[11], provided by the manufacturer to test all the software
components before actual deployment. The aim is to create
two ROS nodes, one for the controller station and the other for
a remote robot, communicating through the DESERT protocol
stack rather than the standard network.

The scenario was created using the open source Gazebo
simulator, designed to generate a 3D dynamic multi-robot
environment capable of building complex worlds [12]. The
purpose of those worlds is to contain all the objects related to
a robotic system, but also to recreate the physical dynamics
to which the elements are subject. For example, the water
viscosity and the underwater drone inertia are computed to
simulate the behavior of a real environment. In our scenario,
depicted in Figure 4, we deployed an AUV and added two
dynamics capabilities:

« buoyancy: since the AUV should maintain depth when

stationary;

o hydrodynamics: using Fossen’s equations which describe

the motion of a craft through the water.

The fully configured environment used for our simulations,
including all relevant parameter settings, is available in the
Gazebo Simulator API Reference, which also provides detailed
installation instructions for Linux systems [13].

Buoyancy in the simulation is modeled as a force that coun-
teracts the weight of the vehicle. To determine the required
buoyant force for neutral buoyancy, the total weight of the
AUV must first be calculated. The total mass of the vehicle
is 148.3571 kg, which includes the chassis (147.8671 kg),
fins (0.2 kg each), and the propeller (0.09 kg). The buoyant
force is directly proportional to the displaced volume of water
according to Archimedes’ principle, which must equal the
weight force:

Pwater * Vneutral * g = Myehicle * 9 (1)

Fig. 4. Underwater world with an AUV.

Mayehicle 148.3571k
Vneutral = hicl = A J (2)
Pwater 1000m—93

This volume represents the space that the vehicle should
take up to achieve neutral buoyancy. If the actual volume
is smaller, the vehicle will sink; if larger, it will ascend.
The factor g represents the gravitational acceleration, while
Myehicle 18 the total mass of the AUV and pyqter 1S the
density of the water. The Gazebo buoyancy plugin computes
the volume using the collision elements contained in
the model’s Simulation Description file. Each collision
element defines a bounding volume, approximated as a cuboid,
specified by a three-dimensional vector representing its side
lengths. By adjusting the dimensions of these collision
elements, it is possible to manipulate the effective volume of
individual components and thereby achieve neutral buoyancy
for the entire vehicle:

Vehassis = 2m - 0.3m - 0.246445167m
Viins =2+ (0.1m - 0.1m - 0.02m) 3)
Viropetler = 0.03m - 0.1m - 0.03m

Vvehicle = Vchassis T+ 2. Vfins + ‘/propeller

4
= 0.1483571m3 @

Those sides lengths for the volume of the chassis Vipqssiss
the volume of the fins Vy;,, and the volume of the propeller
Viropeiler Were chosen to ensure that their sum Viepicie
corresponds to the value of Vi, cyirai-

Moreover, to prevent the vehicle from exhibiting a contin-
uous increase in velocity, the simulation includes a hydrody-
namic drag opposing the thrust force. The plugin incorporates
those drag forces based on the equations presented by Fossen,
which describe the dynamics of marine vehicles in fluid
environments [14]. These equations model the resistive forces
experienced by an underwater vehicle as it moves through
water, accounting for factors such as linear and quadratic
damping. The coefficients required for these models are typi-
cally obtained through computational fluid dynamics (CFD)
simulations or empirical testing in controlled environments
such as tow tanks. For the purposes of this test, we adopt
the parameter values provided in Fossen’s research to define
the hydrodynamic damping characteristics of the vehicle in
our configuration.

To interact with the simulation, sensors can be used to
receive data from the environment, and joints can be employed
to manipulate the environment. Gazebo’s data exchange is
based on a publish-subscribe mechanism that can be directly
connected to ROS, and so each sensor creates a publisher topic
sending periodic data, while each joint creates a subscriber
topic listening for commands.

From the ROS point of view of the system, this part
forms the remote AUV node. The other node is a controller
application used to send commands from the virtual base
station, that we built with a graphical interface where the user



Horizontal fins Propeller

Vertical fins

Dynamic position simulation

* Disabled UDP position Evologics emulator

Host Port AUV name

Fig. 5. ROS controller application for the AUV.

can set the horizontal and vertical fins positions as well as the
propeller value (Figure 5). In the end, both nodes are ROS user
applications running with the rmw_desert middleware, so
the commands are sent down to the emulated acoustic channel
created by the S2C DMACE software by the DESERT stack.

The experiments allowed to test each component of the
system architecture, as well as to investigate our scenario of
interest in a controlled environment. Moreover, we managed
to successfully control the simulated AUV with a negligible
packet loss, thanks to the combination of ROS, DESERT
and DMACE which provided all the characteristics of the
underwater channel and paved the way for future deployments
with real hardware.

As part of the evaluation process, it was verified that the
ROS middleware correctly interfaces with the DESERT Un-
derwater framework by successfully transmitting and receiving
messages between the two systems. Particular attention was
given to ensuring that the messages were accurately interpreted
on both sides, preserving the intended structure and semantics
during the exchange. This confirmation is crucial for the
integration of higher-level robotic control with the underlying
communication stack provided by DESERT.

V. CONCLUSION AND FUTURE WORK

In this paper we presented an efficient open-source frame-
work to control underwater vehicles using acoustic waves,
where DESERT Underwater and the Robot Operating System
are working together to perform a wireless management of
submerged drones. So far, the proposed solution was tested
with a simulated AUV communicating not only through a
simulated acoustic channel, but also through real EvoLogics
modems and the Subsea underwater acoustic software-defined
Modem [15]. The results are promising, and the work done
will soon be exploited to set up a scenario with real vehicles
to test the entire system. Moreover, the modularity offered
by the two frameworks enables users to customize the infras-
tructure for different specific use cases, such as cooperative

autonomous navigation, environmental monitoring, or swarm
coordination, moving a step forward towards the realization of
flexible and scalable wireless underwater robotic systems.

REFERENCES

[1] A. Pal, Filippo Campagnaro, K. Ahraf, R. Rahman, A. Ashok, H. Guo,
“Communication for underwater sensor networks: A comprehensive
summary,” Transactions on Sensor Networks, vol. 19, no. 1, pp. 44,
Nov. 2022.

[2] J. A. Dowdeswell, J. Evans, R. Mugford, et al., “Autonomous under-
water vehicles (AUVs) and investigations of the ice—ocean interface in
Antarctic and Arctic waters,” Journal of Glaciology, vol. 54, no. 187,
pp. 661-672, Oct. 2008.

[3] P. Lunkenheimer, S. Emmert, R. Gulich, M. Kohler, M. Wolf, M.
Schwab, A. Loidl, “Electromagnetic-radiation absorption of water,”
Phys. Rev. E, vol. 96, no. 6, Dec. 2017.

[4] F. Campagnaro, R. Francescon, E. Coccolo, A. Montanari, M. Zorzi, “A
Software-Defined Underwater Acoustic Modem for Everyone: Design
and Evaluation,” IEEE Internet of Things Magazine, vol. 6, no. 1, pp.
102-107, March 2023.

[5] M. Stojanovic, “On the relationship between capacity and distance in
an underwater acoustic communication channel,” ACM Mobile Comput.
Commun. Rev., vol. 11, no. 4, pp. 3443, Oct. 2007.

[6] J. Potter, J. Alves, D. Green, G. Zappa, I. Nissen, and K. McCoy, “The
janus underwater communications standard,” Underwater Communica-
tions and Networking (UComms), Sestri Levante, Italy, pp. 1-4, Sept.
2014.

[71 F. Campagnaro, R. Francescon, F. Guerra, F. Favaro, P. Casari, R.
Diamant, M. Zorzi, “The DESERT underwater framework v2: Improved
capabilities and extension tools,” IEEE Third Underwater Communica-
tions and Networking Conference (UComms), Lerici, Italy, pp. 1-5, Sept.
2016.

[8] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and William Woodall,
“Robot Operating System 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, May 2022.

[9] M. Albonico, M. Dordevié, E. Hamer, I. Malavolta, “Software engineer-

ing research on the Robot Operating System: A systematic mapping

study,” Journal of Systems and Software, vol. 197, March 2023.

C. Bormann, P. Hoffman, “RFC 8949 Concise Binary Object Represen-

tation (CBOR),” Request for Comments, Dec. 2020.

S2C DMAC Emulator, Last time accessed: Apr. 2025. [Online].

Available: https://evologics.de/emulator

N. Koenig, A. Howard, “Design and use paradigms for Gazebo, an open-

source multi-robot simulator,” IEEE/RSJ International Conference on

Intelligent Robots and Systems, vol.3, pp. 2149-2154, Japan, 2004.

Simulation of underwater AUV, Last time accessed: Jun. 2025. [Online].

Available: https://gazebosim.org/api/sim/8/underwater_vehicles.html

T. I. Fossen, “How to incorporate wind, waves and ocean currents in

the marine craft equations of motion,” IFAC Proceedings Volumes, vol.

45, no. 27, pp. 126-131, Sept. 2012.

A. Montanari, V. Cimino, D. Spinosa, F. Donega, F. Marin, F. Campag-

naro, M. Zorzi, “PSK modulation for Underwater Communication and

One-Way Travel-Time Ranging with the Low-Cost Subsea Software-

Defined Acoustic Modem,” The 18th ACM International Conference on

Underwater Networks & Systems (WUWNET ’24), Sibenik, Croatia, no.

9, pp. 1-8, Jan. 2025.

[10]
(11]
[12]

[13]

[14]

[15]



